In order to effectively separate galena and jamesonite and improve the recovery during the mixing flotation, the interaction mechanisms between the minerals and the collector of diethyl dithiocarbamate (DDTC) were i...In order to effectively separate galena and jamesonite and improve the recovery during the mixing flotation, the interaction mechanisms between the minerals and the collector of diethyl dithiocarbamate (DDTC) were investigated. Single mineral flotation test was organized to research the effect of pulp pH value on the flotation behavior of galena and jamesonite. Electrochemistry property of the interaction of these two minerals with DDTC was investigated by cyclic voltammetry and Tafel tests. Flotation test shows that the recovery of jamesonite in high alkaline pulp is strongly depressed by lime (Ca(OH)2). The cyclic voltammetry and Tafel tests results show that the interaction between galena and DDTC is an electrochemical process. High pH value has little influence on the interaction between galena and DDTC, while it has great effect on jamesonite due to self-oxidation and specific adsorption of OH^- and CaOH^+ on jamesonite surface. Non-electroactive hydroxyl compound and low-electroconductive calcium compounds cover the surface of jamesonite, which impedes electron transfer and DDTC adsorption, thus leads to very low floatability of jamesonite.展开更多
采用热分解法制备了不同比例钴酸镧掺杂Ti/RuO_2电极材料。通过扫描电镜(SEM)、能谱分析(EDS)、X射线粉末衍射(XRD)等分析方法表征电极涂层的物相结构与形貌特征,采用电化学测量表征电极的物理化学性能。分析表明电极涂层由不规则的颗...采用热分解法制备了不同比例钴酸镧掺杂Ti/RuO_2电极材料。通过扫描电镜(SEM)、能谱分析(EDS)、X射线粉末衍射(XRD)等分析方法表征电极涂层的物相结构与形貌特征,采用电化学测量表征电极的物理化学性能。分析表明电极涂层由不规则的颗粒组成,颗粒间有一定的孔隙,掺杂钴酸镧电极涂层含有Ti,Ru,La及Co金属元素,相结构主要为金红石相,掺杂钴酸镧电极涂层的晶粒较小,不同掺杂量对晶粒大小影响不大。电化学研究表明,电极具有典型的钌氧化物所具备的电化学性能,掺杂钴酸镧电极的电化学面积较大,电极的可逆性能得到改善。所制备的电极具有大致相同的析氧电位(1.19 V vs. SCE),随着钴酸镧掺杂量的增多,Tafel斜率依次减小,表明掺杂钴酸镧电极的活性较高,且掺杂钴酸镧后电极强化寿命得到显著提高。展开更多
基金Projects(5110417951374247)supported by the National Natural Science Foundation of China
文摘In order to effectively separate galena and jamesonite and improve the recovery during the mixing flotation, the interaction mechanisms between the minerals and the collector of diethyl dithiocarbamate (DDTC) were investigated. Single mineral flotation test was organized to research the effect of pulp pH value on the flotation behavior of galena and jamesonite. Electrochemistry property of the interaction of these two minerals with DDTC was investigated by cyclic voltammetry and Tafel tests. Flotation test shows that the recovery of jamesonite in high alkaline pulp is strongly depressed by lime (Ca(OH)2). The cyclic voltammetry and Tafel tests results show that the interaction between galena and DDTC is an electrochemical process. High pH value has little influence on the interaction between galena and DDTC, while it has great effect on jamesonite due to self-oxidation and specific adsorption of OH^- and CaOH^+ on jamesonite surface. Non-electroactive hydroxyl compound and low-electroconductive calcium compounds cover the surface of jamesonite, which impedes electron transfer and DDTC adsorption, thus leads to very low floatability of jamesonite.
文摘采用热分解法制备了不同比例钴酸镧掺杂Ti/RuO_2电极材料。通过扫描电镜(SEM)、能谱分析(EDS)、X射线粉末衍射(XRD)等分析方法表征电极涂层的物相结构与形貌特征,采用电化学测量表征电极的物理化学性能。分析表明电极涂层由不规则的颗粒组成,颗粒间有一定的孔隙,掺杂钴酸镧电极涂层含有Ti,Ru,La及Co金属元素,相结构主要为金红石相,掺杂钴酸镧电极涂层的晶粒较小,不同掺杂量对晶粒大小影响不大。电化学研究表明,电极具有典型的钌氧化物所具备的电化学性能,掺杂钴酸镧电极的电化学面积较大,电极的可逆性能得到改善。所制备的电极具有大致相同的析氧电位(1.19 V vs. SCE),随着钴酸镧掺杂量的增多,Tafel斜率依次减小,表明掺杂钴酸镧电极的活性较高,且掺杂钴酸镧后电极强化寿命得到显著提高。