期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Joint Modeling of Citation Networks and User Preferences for Academic Tagging Recommender System
1
作者 Weiming Huang Baisong Liu Zhaoliang Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4449-4469,共21页
In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniq... In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques. 展开更多
关键词 Collaborative filtering citation networks variational inference poisson factorization tag recommendation
下载PDF
TagCombine: Recommending Tags to Contents in Software Information Sites 被引量:2
2
作者 王新宇 夏鑫 David Lo 《Journal of Computer Science & Technology》 SCIE EI CSCD 2015年第5期1017-1035,共19页
Nowadays, software engineers use a variety of online media to search and become informed of new and interesting technologies, and to learn from and help one another. We refer to these kinds of online media which help ... Nowadays, software engineers use a variety of online media to search and become informed of new and interesting technologies, and to learn from and help one another. We refer to these kinds of online media which help software engineers improve their performance in software development, maintenance, and test processes as software information sites. In this paper, we propose TagCombine, an automatic tag recommendation method which analyzes objects in software information sites. TagCombine has three different components: 1) multi-label ranking component which considers tag recommendation as a multi-label learning problem; 2) similarity-based ranking component which recommends tags from similar objects; 3) tag-term based ranking component which considers the relationship between different terms and tags, and recommends tags after analyzing the terms in the objects. We evaluate TagCombine on four software information sites, Ask Different, Ask Ubuntu, Feecode, and Stack Overflow. On averaging across the four projects, TagCombine achieves recall@5 and recallS10 to 0.619 8 and 0.762 5 respectively, which improves TagRec proposed by Al-Kofahi et al. by 14.56% and 10.55% respectively, and the tag recommendation method proposed by Zangerle et al. by 12.08% and 8.16% respectively. 展开更多
关键词 software information site online media tag recommendation
原文传递
Community-Based User Domain Model Collaborative Recommendation Algorithm 被引量:3
3
作者 Fulan Qian Yanping Zhang +1 位作者 Yuan Zhang Zhen Duan 《Tsinghua Science and Technology》 SCIE EI CAS 2013年第4期353-359,共7页
Collaborative Filtering (CF) is a commonly used technique in recommendation systems. It can promote items of interest to a target user from a large selection of available items. It is divided into two broad classes... Collaborative Filtering (CF) is a commonly used technique in recommendation systems. It can promote items of interest to a target user from a large selection of available items. It is divided into two broad classes: memory-based algorithms and model-based algorithms. The latter requires some time to build a model but recommends online items quickly, while the former is time-consuming but does not require pre-building time. Considering the shortcomings of the two types of algorithms, we propose a novel Community-based User domain Collaborative Recommendation Algorithm (CUCRA). The idea comes from the fact that recommendations are usually made by users with similar preferences. The first step is to build a user-user social network based on users' preference data. The second step is to find communities with similar user preferences using a community detective algorithm. Finally, items are recommended to users by applying collaborative filtering on communities. Because we recommend items to users in communities instead of to an entire social network, the method has perfect online performance. Applying this method to a collaborative tagging system, experimental results show that the recommendation accuracy of CUCRA is relatively good, and the online time-complexity reduces to O.(n). 展开更多
关键词 collaborative recommendation tagging system community-based recommendation system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部