The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir ...Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir in Yueman block of South Tahe area, Halahatang oilfield, Tarim Basin, were studied systematically. And the regular pattern of hydrocarbon accumulation and enrichment was analyzed systematically based on development practice of the reservoirs. The results show that fault-karst carbonate reservoirs are distributed in the form of "body by body" discontinuously, heterogeneously and irregularly, which are controlled by the development of faults. Three formation models of fault-karst carbonate reservoirs, namely, the models controlled by the main deep-large fault, the secondary fault and the secondary internal fault, are built. The hydrocarbon accumulation and enrichment of fault-karst carbonate reservoirs is controlled by the spatiotemporal matching relation between hydrocarbon generation period and fault activity, and the size and segmentation of fault. The study results can effectively guide the well deployment and help the efficient development of fault-karst carbonate reservoirs of South Tahe area, Halahatang oilfield.展开更多
Based on outcrop,core,logging,seismic and production data,and the formation of fault-controlled karst reservoirs,the types and characterization of Ordovician fault-controlled karst reservoir architectures in the Tuopu...Based on outcrop,core,logging,seismic and production data,and the formation of fault-controlled karst reservoirs,the types and characterization of Ordovician fault-controlled karst reservoir architectures in the Tuoputai area of the Tahe oilfield are studied.According to the concept of genetic geologic body,the fault-controlled karst reservoir is divided into architecture elements of four levels,the strike-slip fault impact zone is the level-1 architecture element,the fault-controlled karst reservoir the level-2 architecture element,the fracture-cave zone(which can be further subdivided into dissolution cave,dissolution pore and vug,and fracture zones)inside the fault-controlled karst reservoir the level-3 architecture element,and fillings inside caves is the level-4 architecture element(which can be further divided based on the filling degree and lithologic types of the fillings).Specific characterization techniques have been optimized according to the characteristics of various architecture elements.The zone impacted by strike-slip fault is characterized by seismic coherence and artificial interpretation.Under the constraint of zone impacted by strike-slip fault,fault likelihood(FL)property is used to characterize the outline of fault-controlled karst reservoir.Under the constraint of fault-controlled karst reservoir outline,the internal structures are divided based on seismic texture attribute.Finally,the cavern filling pattern is interpreted based on drilling and logging data.The fault-controlled karst reservoirs can be interpreted in 3-dimensional space by architecture element levels,and the characterization technology combining log and seismic data for fault-controlled karst reservoir has been worked out,which has complemented the development theory and technologies for this kind of reservoirs in the Tahe oilfield.展开更多
With a comprehensive study on the petrology, geology and geochemistry of some Ordovician granule limestone samples in the Tahe Oiifieid of the Tarim Basin, two stages of burial dissolution were put forward as an in-so...With a comprehensive study on the petrology, geology and geochemistry of some Ordovician granule limestone samples in the Tahe Oiifieid of the Tarim Basin, two stages of burial dissolution were put forward as an in-source dissolution and out-source dissolution based on macro-microcosmic petrology and geochemistry features. The main differences in the two stages are in the origin and moving pass of acid fluids. Geochemical evidence indicates that burial dissolution fluids might be ingredients of organic acids, CO2 and H2S associated with organic matter maturation and hydrocarbon decomposition, and the in-source fluid came from organic matter in the granule limestone itself, but the out-source was mainly from other argillaceous carbonate rocks far away. So, the forming of a burial dissolution reservoir resulted from both in-source and the out-source dissolutions. The granule limestone firstly formed unattached pinholes under in-source dissolution in situ, and afterwards suffered wider dissolution with out-source fluids moving along unconformities, seams, faults and associate fissures. The second stage was much more important, and the mineral composition in the stratum and heat convection of the fluid were also important in forming favorable reservoirs.展开更多
Almost all the oil and gas reservoirs developed in marine sedimentary strata of China have undergone processes of multi-phase reservoir formation and later modification. The irregular reservoirs are classified into th...Almost all the oil and gas reservoirs developed in marine sedimentary strata of China have undergone processes of multi-phase reservoir formation and later modification. The irregular reservoirs are classified into three types as the Naxi, Tahe and Renqiu ones, increasing successively in the development degree of karstificated pores and fissures and the connection degree of independent reservoirs. In these reservoirs, the unity in the fluid feature, pressure and oil-gas-water interface also increases successively from the Naxi to the Renqiu type. The main body of Ordovician reservoirs of the Tahe Oilfield in the Tarim Basin is a network pool rather than a stratified, massive, stratigraphically-unconformed or weathering-crust one. The fluid nature of oil, gas and water, the interface positions and the pressures, as well as the dynamic conditions of fluids within the reservoirs during the production are all different from those in stratified or massive oil and gas reservoirs. Carbonates in the Akekule uplift and the Tahe Oilfield are assemblages of various types of reservoirs, which have an overall oil-bearing potential and obvious uneven distribution. Testing and producing tests are the major means to evaluate this type of reservoirs and acid fracturing improvement is a key link in petroleum exploration and development.展开更多
Based on a large number of drilling,logging,seismic and production data,the differential structures of karst zone and hydrocarbon distribution in different paleogeomorphic units of the Tahe area,Tarim Basin,are discus...Based on a large number of drilling,logging,seismic and production data,the differential structures of karst zone and hydrocarbon distribution in different paleogeomorphic units of the Tahe area,Tarim Basin,are discussed by analyzing the karst drainages and flowing channels.The karst paleogeomorphy of Ordovician in Tahe area is composed of watershed,karst valley and karst basin.The watershed has epikarst zone of 57.8 m thick on average and vadose karst zone of 115.2 m thick on average with dense faults,fractures and medium-small fracture-caves,and 76.5%of wells in this area have cumulative production of more than 5×10^(4) t per well.The karst valleys have epikarst zone,vadose karst zone and runoff karst zone,with an average thickness of 14.6,26.4 and 132.6 m respectively.In the runoff karst zone,the caves of subsurface river are mostly filled by fine sediment,with a filling rate up to 86.8%,and 84.9%of wells in this area have cumulative production of less than 2×10^(4) t per well.The karst basin has no karst zone,but only fault-karst reservoirs in local fault zones,which are up to 600 m thick and closely developed within 1 km around faults.Different karst landforms have different water flowing pattern,forming different karst zone structures and resulting in differential distribution of oil and gas.The watershed has been on the direction of oil and gas migration,so medium-small sized connected fracture-caves in this area have high filling degree of oil and gas,and most wells in this area have high production.Most caves in subsurface river are filled due to strong sedimentation and transportation of the river,so the subsurface river sediment has low hydrocarbon abundance and more low production oil wells.The faults linking source rock are not only the water channels but also the oil-gas migration pathways,where the karst fractures and caves provide huge reservoir space for oil and gas accumulation.展开更多
Going deep has been the strategy for the sustainable development of the Tahe Oilfield.Following the TS1 well in block 1,which revealed excellent combinations of hydrocarbon generation,migration and accumulation in the...Going deep has been the strategy for the sustainable development of the Tahe Oilfield.Following the TS1 well in block 1,which revealed excellent combinations of hydrocarbon generation,migration and accumulation in the deeper parts of the Tarim Basin,the TS2 well was drilled to learn more about the prospectivity in the deeper parts of the main blocks of the Tahe Oilfield.Seventeen core samples were collected to perform fluid inclusion studies,including petrography,fluorescence microspectrometry,and microthermometry.The results show that the deeper parts of the Tahe Oilfield have a good hydrocarbon potential.The Cambrian source rocks can supply sufficient oil for not only the Cambrian reservoirs,but also for the Lower Ordovician reservoirs.The CambrianOrdovician carbonates reservoirs experienced at least three oil charging events and one late gas charging event.Oil accumulations formed in the early stage of basin evolution were likely destroyed in the late stage with deep burial,tectonic movements,or invasion of hydrothermal fluids.Therefore,the deep hydrocarbon exploration of the Tahe Oilfield,even the whole Tarim Basin,should focus on gas accumulations,although oil accumulations,especially in Cambrian reservoirs,cannot be neglected.展开更多
Based on a large number of geological and geophysical data,the formation,fracture-caves types and hydrocarbon distribution of hoodoo-upland on the Ordovician karst slope in the Tahe area,Tarim Basin,are discussed by a...Based on a large number of geological and geophysical data,the formation,fracture-caves types and hydrocarbon distribution of hoodoo-upland on the Ordovician karst slope in the Tahe area,Tarim Basin,are discussed by analyzing faults and strata thickness.The hoodoo-upland was made of high peaks and narrow valleys in the Ordovician karst slope during the Early Hercynian karst period,which were distributed along the NNE positive flower structure and had inherited evolution.The fault-fractures and fracture-vugs complex were extremely developed,with a thickness of 100 m.The cumulative oil production of 60% oil wells was more than 20×10^(4) t per well in the hoodoo-upland,where the residual thickness of the Ordovician Yingshan Formation was greater than karst depressions.Caves formed by the shelter of collapsed breccias were developed in the valleys.They were 1.6 to 13.5 m high,with a filling rate of 51.6%.The positive flower structure under the settings of strike-slip compression controlled the early formation of the hoodoo-upland on the karst slope,resulting in the differences of drainage distribution and karstification.Compared with the water-rich karst valley,the hoodoo-upland with lean water suffered weaker karstification,had thicker residual stratum,and was higher in terrain.In rainy season,the meteoric water flew and corrode along the cracks,forming a complex network of fractures and caves.Combined with inherited uplift and the effective match of the NNE deep faults,oil and gas continuously charged into the reservoir space in the upland,forming the hoodoo fracture-cave reservoir with vertically quasi continuous distribution,high hydrocarbon abundance and high production.展开更多
About 88. 1% of the proven reserves in the Tahe Oilfield in the Tarim Basin of Northwest China are trapped in Ordovician carbonate reservoirs. These reservoirs are formed by unconnected and interconnected networks of ...About 88. 1% of the proven reserves in the Tahe Oilfield in the Tarim Basin of Northwest China are trapped in Ordovician carbonate reservoirs. These reservoirs are formed by unconnected and interconnected networks of karstic porosity forming a heterogeneous and complex reservoir system. Oil, water and gas characteristics vary significantly in different portions of the Ordovician reservoir. There is no uniform oil/water contact in the field, adding to its complexity.An acid fracture treatment is beneficial in 76% of the wells, stimulating nonproductive wells and enhancing production in other wells by fracturing into unconnected reservoirs and enhancing flow pathways with acid. Acid fracture treatments should be a standard procedure for developing this and similar oil fields.展开更多
Stable carbon isotope ratio (δ13Ccarb) analysis has been widely applied to the study of the inter-conti- nental or global marine carbonate correlation. Large-scale Cambrian-Ordovician carbonate platforms were devel...Stable carbon isotope ratio (δ13Ccarb) analysis has been widely applied to the study of the inter-conti- nental or global marine carbonate correlation. Large-scale Cambrian-Ordovician carbonate platforms were developed in the Tarim Basin. But research on fluctuation character- istics and global correlation of δ13Ccarb is still weak. Based on conodont biostratigraphy and whole-rock δ13Ccarb data in the Tahe oil-gas field of the northern Tarim Basin, the global correlation and genesis of positive carbon isotope excursions in the Darriwilian--Early Katian was exam- ined. Three positive excursions were identified in the Tahe oil-gas field including the middle Darriwilian carbon iso- tope excursion (MDICE), the Guttenberg carbon isotope excursion (GICE), and a positive excursion within the Pygodus anserinus conodont zone which is named the Early Sandbian carbon isotope excursion (ESICE) in this paper. Furthermore, these positive excursions had no direct relation with sea level fluctuations. MDICE and GICE could be globally correlated. The Middle-Upper Ordovi- cian Saergan Formation source rocks of the Kalpin outcrops were in accordance with the geological time of MDICE and ESICE. GICE had close relationship with the source rock of the Lianglitag Formation in the basin.Massive organic carbon burial was an important factor controlling the genesis of these positive excursions.展开更多
According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the p...According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin.展开更多
Bioturbation plays an important role in enhancing the reservoir capacity of tight reservoirs.This study aims to understand the alteration mechanism and effects of bioturbation on oil and gas reservoirs,to clarify the ...Bioturbation plays an important role in enhancing the reservoir capacity of tight reservoirs.This study aims to understand the alteration mechanism and effects of bioturbation on oil and gas reservoirs,to clarify the key control factors and constraints influencing the production of bioturbation.The petrophysical characteristics of bioturbation and host sediments in carbonate rocks,such as mineral composition,pore spaces,porosity and permeability,were studied based on the detailed observation and description of the Ordovician cores from the Tahe oilfield.The effect of bioturbation on petrophysical properties of carbonate rocks were carefully analyzed.The results show:(1)Two types of bioturbation,Thalassinoides-like burrows and Planolites-like burrows,mainly occur in the Ordovician cores of the Tahe oilfield,ranging from the Lower-Middle Ordovician Yingshan Formation to the Middle Ordovician Yijianfang Formation.The burrow-fills are mainly composed of dolomite with subhedral and euhedral crystals.The host sediments mainly consist of micrite.(2)The pores in the host sediments are poorly developed and are incapable of forming effective reservoir spaces.However,well-developed intercrystalline pores among dolomites and microfractures in bioturbated sediments with better connectivity can form effective pore spaces.The results of porosity and permeability show that the host sediments without bioturbation are characterized by poor porosity and permeability.However,with the increase of bioturbation intensity,the porosity of the bioturbated sediments firstly increases and then decreases,whereas the permeability increases all the time.(3)Multiple burrows overprinted in the Ordovician carbonate rocks,forming a large-scale bioturbated carbonate rocks with lateral continuity and vertical connectivity,due to the suitable sedimentary setting,ecological conditions,favorable spatiotemporal sediment matching,and abundant organism-substrate interaction.Subsequently,diagenesis(particularly dolomitization and dissolution)has played a positive role in altering the rock fabric and improving the petrophysical properties of bioturbated carbonates.展开更多
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金Supported by the China National Sicence and Technology Project(2016ZX05004)
文摘Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir in Yueman block of South Tahe area, Halahatang oilfield, Tarim Basin, were studied systematically. And the regular pattern of hydrocarbon accumulation and enrichment was analyzed systematically based on development practice of the reservoirs. The results show that fault-karst carbonate reservoirs are distributed in the form of "body by body" discontinuously, heterogeneously and irregularly, which are controlled by the development of faults. Three formation models of fault-karst carbonate reservoirs, namely, the models controlled by the main deep-large fault, the secondary fault and the secondary internal fault, are built. The hydrocarbon accumulation and enrichment of fault-karst carbonate reservoirs is controlled by the spatiotemporal matching relation between hydrocarbon generation period and fault activity, and the size and segmentation of fault. The study results can effectively guide the well deployment and help the efficient development of fault-karst carbonate reservoirs of South Tahe area, Halahatang oilfield.
基金Supported by the Chinese Academy of Sciences Strategic Pilot A Project(XDA14010204)Sinopec Science and Technology Department Project(P18042)China National Science and Technology Major Project(2016ZX05033-003)。
文摘Based on outcrop,core,logging,seismic and production data,and the formation of fault-controlled karst reservoirs,the types and characterization of Ordovician fault-controlled karst reservoir architectures in the Tuoputai area of the Tahe oilfield are studied.According to the concept of genetic geologic body,the fault-controlled karst reservoir is divided into architecture elements of four levels,the strike-slip fault impact zone is the level-1 architecture element,the fault-controlled karst reservoir the level-2 architecture element,the fracture-cave zone(which can be further subdivided into dissolution cave,dissolution pore and vug,and fracture zones)inside the fault-controlled karst reservoir the level-3 architecture element,and fillings inside caves is the level-4 architecture element(which can be further divided based on the filling degree and lithologic types of the fillings).Specific characterization techniques have been optimized according to the characteristics of various architecture elements.The zone impacted by strike-slip fault is characterized by seismic coherence and artificial interpretation.Under the constraint of zone impacted by strike-slip fault,fault likelihood(FL)property is used to characterize the outline of fault-controlled karst reservoir.Under the constraint of fault-controlled karst reservoir outline,the internal structures are divided based on seismic texture attribute.Finally,the cavern filling pattern is interpreted based on drilling and logging data.The fault-controlled karst reservoirs can be interpreted in 3-dimensional space by architecture element levels,and the characterization technology combining log and seismic data for fault-controlled karst reservoir has been worked out,which has complemented the development theory and technologies for this kind of reservoirs in the Tahe oilfield.
文摘With a comprehensive study on the petrology, geology and geochemistry of some Ordovician granule limestone samples in the Tahe Oiifieid of the Tarim Basin, two stages of burial dissolution were put forward as an in-source dissolution and out-source dissolution based on macro-microcosmic petrology and geochemistry features. The main differences in the two stages are in the origin and moving pass of acid fluids. Geochemical evidence indicates that burial dissolution fluids might be ingredients of organic acids, CO2 and H2S associated with organic matter maturation and hydrocarbon decomposition, and the in-source fluid came from organic matter in the granule limestone itself, but the out-source was mainly from other argillaceous carbonate rocks far away. So, the forming of a burial dissolution reservoir resulted from both in-source and the out-source dissolutions. The granule limestone firstly formed unattached pinholes under in-source dissolution in situ, and afterwards suffered wider dissolution with out-source fluids moving along unconformities, seams, faults and associate fissures. The second stage was much more important, and the mineral composition in the stratum and heat convection of the fluid were also important in forming favorable reservoirs.
文摘Almost all the oil and gas reservoirs developed in marine sedimentary strata of China have undergone processes of multi-phase reservoir formation and later modification. The irregular reservoirs are classified into three types as the Naxi, Tahe and Renqiu ones, increasing successively in the development degree of karstificated pores and fissures and the connection degree of independent reservoirs. In these reservoirs, the unity in the fluid feature, pressure and oil-gas-water interface also increases successively from the Naxi to the Renqiu type. The main body of Ordovician reservoirs of the Tahe Oilfield in the Tarim Basin is a network pool rather than a stratified, massive, stratigraphically-unconformed or weathering-crust one. The fluid nature of oil, gas and water, the interface positions and the pressures, as well as the dynamic conditions of fluids within the reservoirs during the production are all different from those in stratified or massive oil and gas reservoirs. Carbonates in the Akekule uplift and the Tahe Oilfield are assemblages of various types of reservoirs, which have an overall oil-bearing potential and obvious uneven distribution. Testing and producing tests are the major means to evaluate this type of reservoirs and acid fracturing improvement is a key link in petroleum exploration and development.
基金Supported by the China National Science and Technology Major Project(2016ZX05014002-007)National Natural Science Foundation of China(U1663204/42072171/41772103)。
文摘Based on a large number of drilling,logging,seismic and production data,the differential structures of karst zone and hydrocarbon distribution in different paleogeomorphic units of the Tahe area,Tarim Basin,are discussed by analyzing the karst drainages and flowing channels.The karst paleogeomorphy of Ordovician in Tahe area is composed of watershed,karst valley and karst basin.The watershed has epikarst zone of 57.8 m thick on average and vadose karst zone of 115.2 m thick on average with dense faults,fractures and medium-small fracture-caves,and 76.5%of wells in this area have cumulative production of more than 5×10^(4) t per well.The karst valleys have epikarst zone,vadose karst zone and runoff karst zone,with an average thickness of 14.6,26.4 and 132.6 m respectively.In the runoff karst zone,the caves of subsurface river are mostly filled by fine sediment,with a filling rate up to 86.8%,and 84.9%of wells in this area have cumulative production of less than 2×10^(4) t per well.The karst basin has no karst zone,but only fault-karst reservoirs in local fault zones,which are up to 600 m thick and closely developed within 1 km around faults.Different karst landforms have different water flowing pattern,forming different karst zone structures and resulting in differential distribution of oil and gas.The watershed has been on the direction of oil and gas migration,so medium-small sized connected fracture-caves in this area have high filling degree of oil and gas,and most wells in this area have high production.Most caves in subsurface river are filled due to strong sedimentation and transportation of the river,so the subsurface river sediment has low hydrocarbon abundance and more low production oil wells.The faults linking source rock are not only the water channels but also the oil-gas migration pathways,where the karst fractures and caves provide huge reservoir space for oil and gas accumulation.
基金supported by National Basic Research Program of China(Grant No.2012CB214804)the Fundamental Research Funds for the Central Universities, China University of Geosciences(Wuhan)(Grant No. cug130104)
文摘Going deep has been the strategy for the sustainable development of the Tahe Oilfield.Following the TS1 well in block 1,which revealed excellent combinations of hydrocarbon generation,migration and accumulation in the deeper parts of the Tarim Basin,the TS2 well was drilled to learn more about the prospectivity in the deeper parts of the main blocks of the Tahe Oilfield.Seventeen core samples were collected to perform fluid inclusion studies,including petrography,fluorescence microspectrometry,and microthermometry.The results show that the deeper parts of the Tahe Oilfield have a good hydrocarbon potential.The Cambrian source rocks can supply sufficient oil for not only the Cambrian reservoirs,but also for the Lower Ordovician reservoirs.The CambrianOrdovician carbonates reservoirs experienced at least three oil charging events and one late gas charging event.Oil accumulations formed in the early stage of basin evolution were likely destroyed in the late stage with deep burial,tectonic movements,or invasion of hydrothermal fluids.Therefore,the deep hydrocarbon exploration of the Tahe Oilfield,even the whole Tarim Basin,should focus on gas accumulations,although oil accumulations,especially in Cambrian reservoirs,cannot be neglected.
基金Supported by the National Natural Science Foundation of China(U1663204)National Major Oil and Gas Project(2016ZX05014002-007)。
文摘Based on a large number of geological and geophysical data,the formation,fracture-caves types and hydrocarbon distribution of hoodoo-upland on the Ordovician karst slope in the Tahe area,Tarim Basin,are discussed by analyzing faults and strata thickness.The hoodoo-upland was made of high peaks and narrow valleys in the Ordovician karst slope during the Early Hercynian karst period,which were distributed along the NNE positive flower structure and had inherited evolution.The fault-fractures and fracture-vugs complex were extremely developed,with a thickness of 100 m.The cumulative oil production of 60% oil wells was more than 20×10^(4) t per well in the hoodoo-upland,where the residual thickness of the Ordovician Yingshan Formation was greater than karst depressions.Caves formed by the shelter of collapsed breccias were developed in the valleys.They were 1.6 to 13.5 m high,with a filling rate of 51.6%.The positive flower structure under the settings of strike-slip compression controlled the early formation of the hoodoo-upland on the karst slope,resulting in the differences of drainage distribution and karstification.Compared with the water-rich karst valley,the hoodoo-upland with lean water suffered weaker karstification,had thicker residual stratum,and was higher in terrain.In rainy season,the meteoric water flew and corrode along the cracks,forming a complex network of fractures and caves.Combined with inherited uplift and the effective match of the NNE deep faults,oil and gas continuously charged into the reservoir space in the upland,forming the hoodoo fracture-cave reservoir with vertically quasi continuous distribution,high hydrocarbon abundance and high production.
文摘About 88. 1% of the proven reserves in the Tahe Oilfield in the Tarim Basin of Northwest China are trapped in Ordovician carbonate reservoirs. These reservoirs are formed by unconnected and interconnected networks of karstic porosity forming a heterogeneous and complex reservoir system. Oil, water and gas characteristics vary significantly in different portions of the Ordovician reservoir. There is no uniform oil/water contact in the field, adding to its complexity.An acid fracture treatment is beneficial in 76% of the wells, stimulating nonproductive wells and enhancing production in other wells by fracturing into unconnected reservoirs and enhancing flow pathways with acid. Acid fracture treatments should be a standard procedure for developing this and similar oil fields.
基金supported by the National Key Scientific Project of China(No.2011ZX05005-0042016ZX05005-002)the National Basic Research Program of China(973 Program)(No.2012CB214806)
文摘Stable carbon isotope ratio (δ13Ccarb) analysis has been widely applied to the study of the inter-conti- nental or global marine carbonate correlation. Large-scale Cambrian-Ordovician carbonate platforms were developed in the Tarim Basin. But research on fluctuation character- istics and global correlation of δ13Ccarb is still weak. Based on conodont biostratigraphy and whole-rock δ13Ccarb data in the Tahe oil-gas field of the northern Tarim Basin, the global correlation and genesis of positive carbon isotope excursions in the Darriwilian--Early Katian was exam- ined. Three positive excursions were identified in the Tahe oil-gas field including the middle Darriwilian carbon iso- tope excursion (MDICE), the Guttenberg carbon isotope excursion (GICE), and a positive excursion within the Pygodus anserinus conodont zone which is named the Early Sandbian carbon isotope excursion (ESICE) in this paper. Furthermore, these positive excursions had no direct relation with sea level fluctuations. MDICE and GICE could be globally correlated. The Middle-Upper Ordovi- cian Saergan Formation source rocks of the Kalpin outcrops were in accordance with the geological time of MDICE and ESICE. GICE had close relationship with the source rock of the Lianglitag Formation in the basin.Massive organic carbon burial was an important factor controlling the genesis of these positive excursions.
基金Supported by the Sichuan Province Regional Innovation Cooperation Project(21QYCX0048)Sinopec Science and Technology Department Project(P21048-3)。
文摘According to the complex differential accumulation history of deep marine oil and gas in superimposed basins,the Lower Paleozoic petroleum system in Tahe Oilfield of Tarim Basin is selected as a typical case,and the process of hydrocarbon generation and expulsion,migration and accumulation,adjustment and transformation of deep oil and gas is restored by means of reservoine-forming dynamics simulation.The thermal evolution history of the Lower Cambrian source rocks in Tahe Oilfield reflects the obvious differences in hydrocarbon generation and expulsion process and intensity in different tectonic zones,which is the main reason controlling the differences in deep oil and gas phases.The complex transport system composed of strike-slip fault and unconformity,etc.controlled early migration and accumulation and late adjustment of deep oil and gas,while the Middle Cambrian gypsum-salt rock in inner carbonate platform prevented vertical migration and accumulation of deep oil and gas,resulting in an obvious"fault-controlled"feature of deep oil and gas,in which the low potential area superimposed by the NE-strike-slip fault zone and deep oil and gas migration was conducive to accumulation,and it is mainly beaded along the strike-slip fault zone in the northeast direction.The dynamic simulation of reservoir formation reveals that the spatio-temporal configuration of"source-fault-fracture-gypsum-preservation"controls the differential accumulation of deep oil and gas in Tahe Oilfield.The Ordovician has experienced the accumulation history of multiple periods of charging,vertical migration and accumulation,and lateral adjustment and transformation,and deep oil and gas have always been in the dynamic equilibrium of migration,accumulation and escape.The statistics of residual oil and gas show that the deep stratum of Tahe Oilfield still has exploration and development potential in the Ordovician Yingshan Formation and Penglaiba Formation,and the Middle and Upper Cambrian ultra-deep stratum has a certain oil and gas resource prospect.This study provides a reference for the dynamic quantitative evaluation of deep oil and gas in the Tarim Basin,and also provides a reference for the study of reservoir formation and evolution in carbonate reservoir of paleo-craton basin.
基金Project supported by the National Natural Science Foundation of China(Grants No.41472104 to YBN).The property characterization and interpretation of controlling factor and restriction mechanism of those ichnofabrics enhanced reservoir capacity in marine carbonate rocksProject supported by National Natural Science Foundation of China(Grants No.41102076 to YBN).Ichnofabrics and their reservoir modification effecs in the carbonate rocks from the Ordovician Majiagou Formation,Northwest Henan Province,China+4 种基金Project supported by Natural Science Foundation of Henan Province,China(Grants Nos.202300410185to YBN,and 212300410349 to LJZ)Project supported by The Science and Technology Major Project of Shanxi Province,China(Grant No.20181101013-1)the Program for Innovative Research Team(in Science and Technology)in Universities of Henan Province,China(Grant No.21IRTSTHN007)the Program for Innovative Research Team(in Science and Technology)of Henan Polytechnic University(Grants Nos.T2022-5 and T2020-4)The Funddamental Research Funds for the Universities of Henan Province(Grant No.NSFRF200340to LJZ)。
文摘Bioturbation plays an important role in enhancing the reservoir capacity of tight reservoirs.This study aims to understand the alteration mechanism and effects of bioturbation on oil and gas reservoirs,to clarify the key control factors and constraints influencing the production of bioturbation.The petrophysical characteristics of bioturbation and host sediments in carbonate rocks,such as mineral composition,pore spaces,porosity and permeability,were studied based on the detailed observation and description of the Ordovician cores from the Tahe oilfield.The effect of bioturbation on petrophysical properties of carbonate rocks were carefully analyzed.The results show:(1)Two types of bioturbation,Thalassinoides-like burrows and Planolites-like burrows,mainly occur in the Ordovician cores of the Tahe oilfield,ranging from the Lower-Middle Ordovician Yingshan Formation to the Middle Ordovician Yijianfang Formation.The burrow-fills are mainly composed of dolomite with subhedral and euhedral crystals.The host sediments mainly consist of micrite.(2)The pores in the host sediments are poorly developed and are incapable of forming effective reservoir spaces.However,well-developed intercrystalline pores among dolomites and microfractures in bioturbated sediments with better connectivity can form effective pore spaces.The results of porosity and permeability show that the host sediments without bioturbation are characterized by poor porosity and permeability.However,with the increase of bioturbation intensity,the porosity of the bioturbated sediments firstly increases and then decreases,whereas the permeability increases all the time.(3)Multiple burrows overprinted in the Ordovician carbonate rocks,forming a large-scale bioturbated carbonate rocks with lateral continuity and vertical connectivity,due to the suitable sedimentary setting,ecological conditions,favorable spatiotemporal sediment matching,and abundant organism-substrate interaction.Subsequently,diagenesis(particularly dolomitization and dissolution)has played a positive role in altering the rock fabric and improving the petrophysical properties of bioturbated carbonates.