Several automotive parts such as door panels have been manufactured by using load-adapted blanks for crash optimization and weight minimization. Recently, Tailor Rolled Blanks (TRB) has been introduced to remove the d...Several automotive parts such as door panels have been manufactured by using load-adapted blanks for crash optimization and weight minimization. Recently, Tailor Rolled Blanks (TRB) has been introduced to remove the disadvantages of a welding process which was used in joining panel components. TRB offers better structural design capabilities due to the seamless transitions on the panels with different thicknesses. In spite of the advantages of the process, TRB leaves internal stresses in the panel. This residual stresses lower the formability of Tailor Rolled Blanked (TRBed) parts and cause cracks near severe curvature during subsequent forming processes. In this research, the residual stresses of TRBed Al5J32-T4 sheets were studied by X-ray stress analysis, and also microstructure was observed along the rolling direction. In addition, heat treatment was done after TRB process in order to compare the residual stresses to that of the TRBed sheets before the heat treatment.展开更多
The deformation characteristics of tailor rolled blank (TRB) in the course of uniaxial tension were studied by means of analysis, test and simulation. The mechanical analytical model of TRB during uniaxial tension w...The deformation characteristics of tailor rolled blank (TRB) in the course of uniaxial tension were studied by means of analysis, test and simulation. The mechanical analytical model of TRB during uniaxial tension was set up, and the deformation formulae for the thinner side and for the thicker side were derived to quantify the deformation of TRB. On this basis, uniaxial tension tests on TRB and ordinary blanks (the thinner side and the thicker side of TRB) were conducted. Lagrange polynomial interpolation method was adopted to construct the stress-strain fields of unannealed and annealed TRBs for solving TRB material parameters, and then, uniaxial tension simulation on TRB was completed. Deformations and properties of unannealed TRB were compared with those of annealed TRB, and the thinner side and the thicker side were also compared. Finally, the research results were explained by metallurgical structure. The results show that nonuniform deformation happens in TRB during uniaxial tension, and the necking occurs on the thinner side. The agreement of analysis, test and simulation confirms the correctness of the analytical model and the deformation formulae. The findings of this paper can lay the foundation for the future study on TRB stamping formability and provide a way for TRB modeling.展开更多
The process of automobile lightweight can be promoted by the application of tailor rolled blank(TRB)in the automobile industry.Therefore,research on the formability of TRB is of good practical significance and appli...The process of automobile lightweight can be promoted by the application of tailor rolled blank(TRB)in the automobile industry.Therefore,research on the formability of TRB is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight.Aiming at the present condition of lack of researches on the influence of characteristic parameters on TRB drawing process,the drawing formability of TRB was studied with a combination method of simulation and experiment by taking square box as the research object.Firstly,drawing simulation and experiment of TRB were carried out.Then,effects of thickness transition zone(TTZ)position and blank size on the drawing formability of TRB were analyzed.Forming limit and TTZ movement for TRB square box during the drawing process were respectively discussed,when transition zones of TRB were located at different positions and blanks were of different sizes.The results indicate that lubrication condition exerts greater influence on TRB forming limit in comparison with TTZ movement,and the smaller blank size and TTZ being located at the blank center or slightly offset to the thinner side are preferable for acquiring greater forming limit and smaller TTZ movement.展开更多
The deformation process of tailor rolled blank (TRB)is different from that of a monolithic blank as a result of the variable thickness in the rolling direction,and thus,the mechanism of the crack phenomenon needs to b...The deformation process of tailor rolled blank (TRB)is different from that of a monolithic blank as a result of the variable thickness in the rolling direction,and thus,the mechanism of the crack phenomenon needs to be further studied.The crack defect of TRB square box was studied by numerical simulation and stamping experiment.The stress state of TRB square box was elaborated.On this basis,the forming characteristics of TRB square box were summarized.The effects of blank size and blank holder force (BHF)on the thickness thinning of TRB were discussed.Finally,the mechanism.of the crack defect for TRB square box was revealed.Results indicate that non-uniformity is the most prominent characteristic during forming of TRB square box.The larger the blank size and BHF on the thinner side are,the more inclined TRB is to crack. Excessive BHF or insufficient BHF on the thicker side can also lead to the occurrence of the crack defect.BHF on the thinner side slightly greater than that on the thicker side (40 kN on the thinner side and 20 kN on the thicker side)is advantageous to restrict the excessive thickness thinning of TRB and acquire a better formability.The location inclined to crack for TRB square box is the round comer of the wall on the thinner side.展开更多
Research on the formability of tailor rolled blank (TRB) is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight. However, the forming...Research on the formability of tailor rolled blank (TRB) is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight. However, the forming of TRB is problematic because of the varying properties; especially, springback is a main challenge. The transverse bending (bending axis is perpendicular to the rolling direction) of TRB U channel was studied through simulation and experiment. The forming characteristics of TRB U channel during transverse bending were analyzed. The mechanisms of forming defects, including bending springback and thickness transition zone (TTZ) movement, were revealed. On this basis, effects of blank geometric parameters on springbaek and TTZ movement were discussed. The results indicate that springback and TTZ movement happen during transverse bending of TRB U-channel. Nonuni form stress distribution is the most fundamental reason for the occurrence of springback of TRB during transverse bending. Annealing can eliminate nonuniform stress distribution, and thus diminish springbaek of TRB, especially springback on the thinner side. Therefore, springback of the whole TRB becomes more uniform. However, annealing can increase the TTZ movement. Blank thickness and TTZ position are the main factors affecting the formability of TRB U-channel during transverse bending.展开更多
In order to grasp the springback rule of TRB ( tailor rolled blank ) parts after forming , the springback behavior of TRB was investigated by integrating such three means as theoretical research , numerical simulation...In order to grasp the springback rule of TRB ( tailor rolled blank ) parts after forming , the springback behavior of TRB was investigated by integrating such three means as theoretical research , numerical simulation and stamping experiments.Fundamental theories of springback were analyzed.The stamping and springback processes of annealed 1.2 / 2.0mm TRB , 1.2mm and 2.0mm plates for U-channel were simulated , and the simulation results were compared with the experiments.The results indicate that the springback of TRB falls in between those of the 1.2mm and 2.0mm plates.It is desirable for the TRB U-channel to have die clearance of 1.1times maximum blank thickness and friction coefficient of about 0.12 , and longer thickness transition zone is preferable.The simulation data demonstrate reasonably good agreement with the experiments.展开更多
基金This work was financiallysupportedbythe Research Grants(NN-8501)from Ministry ofCommerce,Industry and Energyin Republic ofKorea.
文摘Several automotive parts such as door panels have been manufactured by using load-adapted blanks for crash optimization and weight minimization. Recently, Tailor Rolled Blanks (TRB) has been introduced to remove the disadvantages of a welding process which was used in joining panel components. TRB offers better structural design capabilities due to the seamless transitions on the panels with different thicknesses. In spite of the advantages of the process, TRB leaves internal stresses in the panel. This residual stresses lower the formability of Tailor Rolled Blanked (TRBed) parts and cause cracks near severe curvature during subsequent forming processes. In this research, the residual stresses of TRBed Al5J32-T4 sheets were studied by X-ray stress analysis, and also microstructure was observed along the rolling direction. In addition, heat treatment was done after TRB process in order to compare the residual stresses to that of the TRBed sheets before the heat treatment.
基金financially supported by the National Natural Science Foundation of China (Nos. 51105068 and 51475086)the Fundamental Research Funds for the Central Universities (Nos. N130323003 and XNB201413)the Science and Technology Research Project for Higher School of Hebei Province (No. Z2013068)
文摘The deformation characteristics of tailor rolled blank (TRB) in the course of uniaxial tension were studied by means of analysis, test and simulation. The mechanical analytical model of TRB during uniaxial tension was set up, and the deformation formulae for the thinner side and for the thicker side were derived to quantify the deformation of TRB. On this basis, uniaxial tension tests on TRB and ordinary blanks (the thinner side and the thicker side of TRB) were conducted. Lagrange polynomial interpolation method was adopted to construct the stress-strain fields of unannealed and annealed TRBs for solving TRB material parameters, and then, uniaxial tension simulation on TRB was completed. Deformations and properties of unannealed TRB were compared with those of annealed TRB, and the thinner side and the thicker side were also compared. Finally, the research results were explained by metallurgical structure. The results show that nonuniform deformation happens in TRB during uniaxial tension, and the necking occurs on the thinner side. The agreement of analysis, test and simulation confirms the correctness of the analytical model and the deformation formulae. The findings of this paper can lay the foundation for the future study on TRB stamping formability and provide a way for TRB modeling.
基金Item Sponsored by National Natural Science Foundation of China(51105068,51475086)Fundamental Research Funds for the Central Universities of China(N130323003,XNB201413)Science and Technology Research Project for Higher School of Hebei Province of China(Z2013068)
文摘The process of automobile lightweight can be promoted by the application of tailor rolled blank(TRB)in the automobile industry.Therefore,research on the formability of TRB is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight.Aiming at the present condition of lack of researches on the influence of characteristic parameters on TRB drawing process,the drawing formability of TRB was studied with a combination method of simulation and experiment by taking square box as the research object.Firstly,drawing simulation and experiment of TRB were carried out.Then,effects of thickness transition zone(TTZ)position and blank size on the drawing formability of TRB were analyzed.Forming limit and TTZ movement for TRB square box during the drawing process were respectively discussed,when transition zones of TRB were located at different positions and blanks were of different sizes.The results indicate that lubrication condition exerts greater influence on TRB forming limit in comparison with TTZ movement,and the smaller blank size and TTZ being located at the blank center or slightly offset to the thinner side are preferable for acquiring greater forming limit and smaller TTZ movement.
基金National Natural Science Foundation of China (51475086)Natural Science Foundation of Hebei Province (E2016501118)+1 种基金Fundamental Research Funds for the Central Universities (N172304036)Science and Technology Research Project for Higher School of Hebei Province (ZD2017315).
文摘The deformation process of tailor rolled blank (TRB)is different from that of a monolithic blank as a result of the variable thickness in the rolling direction,and thus,the mechanism of the crack phenomenon needs to be further studied.The crack defect of TRB square box was studied by numerical simulation and stamping experiment.The stress state of TRB square box was elaborated.On this basis,the forming characteristics of TRB square box were summarized.The effects of blank size and blank holder force (BHF)on the thickness thinning of TRB were discussed.Finally,the mechanism.of the crack defect for TRB square box was revealed.Results indicate that non-uniformity is the most prominent characteristic during forming of TRB square box.The larger the blank size and BHF on the thinner side are,the more inclined TRB is to crack. Excessive BHF or insufficient BHF on the thicker side can also lead to the occurrence of the crack defect.BHF on the thinner side slightly greater than that on the thicker side (40 kN on the thinner side and 20 kN on the thicker side)is advantageous to restrict the excessive thickness thinning of TRB and acquire a better formability.The location inclined to crack for TRB square box is the round comer of the wall on the thinner side.
基金Item Sponsored by National Natural Science Foundation of China(51475086)Natural Science Foundation of Hebei Province of China(E2016501118,E2015501073)China Postdoctoral Science Foundation(2016M591404)
文摘Research on the formability of tailor rolled blank (TRB) is of good practical significance and application value because of the enormous potential of TRB in the aspect of automobile lightweight. However, the forming of TRB is problematic because of the varying properties; especially, springback is a main challenge. The transverse bending (bending axis is perpendicular to the rolling direction) of TRB U channel was studied through simulation and experiment. The forming characteristics of TRB U channel during transverse bending were analyzed. The mechanisms of forming defects, including bending springback and thickness transition zone (TTZ) movement, were revealed. On this basis, effects of blank geometric parameters on springbaek and TTZ movement were discussed. The results indicate that springback and TTZ movement happen during transverse bending of TRB U-channel. Nonuni form stress distribution is the most fundamental reason for the occurrence of springback of TRB during transverse bending. Annealing can eliminate nonuniform stress distribution, and thus diminish springbaek of TRB, especially springback on the thinner side. Therefore, springback of the whole TRB becomes more uniform. However, annealing can increase the TTZ movement. Blank thickness and TTZ position are the main factors affecting the formability of TRB U-channel during transverse bending.
基金Item Sponsored by National Natural Science Foundation of China ( 10932003 , 50974039 , 50872126 )National Basic Research Program of China ( 2010CB832700 )Fundamental Research Funds for Central Universities of China ( 893324 , DUT11ZD202 )
文摘In order to grasp the springback rule of TRB ( tailor rolled blank ) parts after forming , the springback behavior of TRB was investigated by integrating such three means as theoretical research , numerical simulation and stamping experiments.Fundamental theories of springback were analyzed.The stamping and springback processes of annealed 1.2 / 2.0mm TRB , 1.2mm and 2.0mm plates for U-channel were simulated , and the simulation results were compared with the experiments.The results indicate that the springback of TRB falls in between those of the 1.2mm and 2.0mm plates.It is desirable for the TRB U-channel to have die clearance of 1.1times maximum blank thickness and friction coefficient of about 0.12 , and longer thickness transition zone is preferable.The simulation data demonstrate reasonably good agreement with the experiments.