Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav...Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.展开更多
The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended ...The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.展开更多
BACKGROUND Hallux valgus(HV)is a common foot deformity that manifests with increasing age,especially in women.The associated foot pain causes impaired gait and decreases quality of life.Moderate and severe HV is a def...BACKGROUND Hallux valgus(HV)is a common foot deformity that manifests with increasing age,especially in women.The associated foot pain causes impaired gait and decreases quality of life.Moderate and severe HV is a deformity that is charac-terized by the involvement of lesser rays and requires complex surgical treatment.In this study,we attempted to develop a procedure for this condition.AIM To analyse the treatment results of patients who underwent simultaneous surgical correction of all parts of a static forefoot deformity.METHODS We conducted a prospective clinical trial between 2016 and 2021 in which 30 feet with moderate or severe HV associated with Tailor’s bunion and metatarsalgia were surgically treated via a new method involving surgical correction of all associated problems.This method included a modified Lapidus procedure,M2M3 tarsometatarsal arthrodesis,intermetatarsal fusion of the M4 and M5 bases,and the use of an original external fixation apparatus to enhance correction power.Preoperative,postoperative,and final follow-up radiographic data and American Orthopaedic Foot and Ankle Society(AOFAS)scores were compared,and P values<0.05 were considered to indicate statistical significance.RESULTS The study included 28 females(93.3%)and 2 males feet(6.7%),20(66.7%)of whom had a moderate degree of HV and 10(33.3%)of whom had severe deformity.M2 and M3 metatarsalgia was observed in 21 feet,and 9 feet experienced pain only at M2.The mean follow-up duration was 11 months.All patients had good correction of the HV angle[preoperative median,36.5 degrees,interquartile range(IQR):30-45;postoperative median,10 degrees,IQR:8.8-10;follow-up median,11.5 degrees,IQR:10-14;P<0.01].At follow-up,metatarsalgia was resolved in most patients(30 vs 5).There was a clinically negligible decrease in the corrected angles at the final follow-up,and the overall AOFAS score was significantly better(median,65 points,IQR:53.8-70;vs 80 points,IQR:75-85;P<0.01).CONCLUSION The developed method showed good sustainability of correction power in a small sample of patients at the one-year follow-up.Randomized clinical trials with larger samples,as well as long-term outcome assessments,are needed in the future.展开更多
Auxetic materials are cellular materials with a unique property of negative Poisson’s ratio.The auxeticity and performance of these metamaterials utterly depend on the geometrical parameters and loading direction.For...Auxetic materials are cellular materials with a unique property of negative Poisson’s ratio.The auxeticity and performance of these metamaterials utterly depend on the geometrical parameters and loading direction.For the first time,the quasi-static uniaxial compression performance of fused filament fabricated re-entrant diamond auxetic metamaterial is evaluated in the x-direction(in-plane)and z-direction(out-of-plane).The most commonly used thermoplastic feedstock,Acrylonitrile butadiene styrene,is considered a material of choice.The effect of influential geometrical parameters of the re-entrant diamond structure and printing parameter is systematically studied using Taguchi’s design of experiments.Grey-based multi-objective optimisation technique has been adopted to arrive at the optimal structure.Efforts are made to improve the stiffness and strength of the structure with fibre reinforcements.Micro glass fibre reinforcements have enhanced specific strength and stiffness in both in-plane and out-ofplane directions.A sevenfold and thirteen times increase in specific strength and energy absorption is evident for glass fibre-reinforced structures in out-of-plane directions compared to in-plane ones.Proper tuning of geometrical parameters of the re-entrant diamond structure can result in a Poisson’s ratio of up to-3.49 when tested in the x-direction.The parametric study has illustrated the tailorability of the structure according to the application requirements.The statistical study has signified each considered parameter’s contribution to the compression performance characteristics of the 3D printed re-entrant diamond auxetic metamaterial.展开更多
Long-term optical data storage(ODS)technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data.Here,ODS with an ultralong lifetime of 2×10^(7)...Long-term optical data storage(ODS)technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data.Here,ODS with an ultralong lifetime of 2×10^(7)years is attained with single ultrafast laser pulse induced reduction of Eu^(3+)ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses.We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm^(2).Furthermore,the active ions of Eu^(2+)exhibit strong and broadband emission with the full width at half maximum reaching 190 nm,and the photoluminescence(PL)is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses.The developed technology and materials will be of great significance in photonic applications such as long-term ODS.展开更多
This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review...This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC,discussing both the selection of materials and the challenges that come with making that choice.This article discussed the relevant factors involved in developing electrodes with nano/microstructure.Nanocomposites,e.g.,non-cobalt and lithiated materials,are only a few of the electrode types now being researched.Furthermore,the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure.Insights into the possibilities and difficulties of the material are discussed.To achieve the desired microstructural features,this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process.The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical.This article also provides important and useful recommendations for the strategic design of electrode materials researchers.展开更多
The mechanical mismatch effect frequently occurs in the dissimilar materials welded joints, thus leading to plastic gradient at the interface between the weld and heat-affected zone(HAZ). In this work, the boron steel...The mechanical mismatch effect frequently occurs in the dissimilar materials welded joints, thus leading to plastic gradient at the interface between the weld and heat-affected zone(HAZ). In this work, the boron steel and Q235 steel were selected for laser tailor welding,which obtained boron/Q235 steel tailor-welded blanks(TWBs). The method of welding with synchronous thermal field(WSTF) was utilized to eliminate the mismatch effects in TWBs. The WSTF was employed to adjust cooling rates of welded joints, thereby intervening in the solidification behaviors and phase transition of the molten pool. Boron/Q235 steel was welded by laser under conventional and WSTF(300-600 ℃) conditions, respectively. The results show that the microstructure of weld and HAZ(boron) was adequately transitioned to ferrites and pearlites instead of abundant martensite by WSTF. Meanwhile, the discrepancy of microhardness and yield strength between various regions of welded joints was greatly reduced, and the overall plasticity of welded joints was enhanced by WSTF. It is indicated that WSTF can effectively contribute to reducing plastic gradient and achieving mechanical congruity in welded joints by restraining the generation of hardbrittle phase, which could significantly improve the formability of TWBs in subsequent hot stamping.展开更多
Defect engineering presents great promise in addressing lower specific capacity,sluggish diffusion kinetics and poor cycling life issues in energy storage devices.Herein,multidimensional(0D/2D/3D) structural defects a...Defect engineering presents great promise in addressing lower specific capacity,sluggish diffusion kinetics and poor cycling life issues in energy storage devices.Herein,multidimensional(0D/2D/3D) structural defects are constructed in WO_(3)/MoO_(2) simultaneously via competing for and sharing with O atoms during simple hydrothermal process.OD and 2D defects tailor local electron,activating more sites and generating built-in electric fields to yield ion reservoir,meanwhile,3D defect owning lower anisotropic property tailors Mg^(2+) diffusion channels to fully exploit Mg^(2+) adsorbed sites induced by OD and 2D defects,enhance the kinetics and maintain structural stability.Benefitted from synergistic effect of 0D/2D/3D structural defects,the designed WO_(3)/MoO_(2) shows the higher specific capacity(112.8 mA h g^(-1) at 50 mA g^(-1) with average attenuation rate per cycle of 0.068%),superior rate capability and excellent cycling stability(specific capacity retention of 80% after 1500 cycles at 1000 mA g^(-1)).This strategy provides design ideas of introducing multidimensional structural defects for tailoring local electron and microstructure to improve energy storage property.展开更多
Attracted by high energy density and considerable conductivity of selenium(Se),Na-Se batteries have been deemed promising energy-storage systems.But,it still suffers from sluggish kinetic behaviors and similar“shuttl...Attracted by high energy density and considerable conductivity of selenium(Se),Na-Se batteries have been deemed promising energy-storage systems.But,it still suffers from sluggish kinetic behaviors and similar“shuttling effect”to S-electrodes.Herein,utilizing uniform hollow carbon spheres as precursors,Se-material is effectively loaded through vapor-infiltration method.Owing to the distribution of optimized pores,the content of microspores could be up to~60%(<2 nm),serving important roles for the physical confinement effect.Meanwhile,the rich oxygen-containing groups and N-elements could be noted,inducing the evolution of electron-moving behaviors.More significantly,assisted by the interfacial C-Se bonds and tiny Se distributions,Se electrodes are activated during cycling.Used as cathodes for Na-Se systems,the as-resulted samples display a capacity of 593.9 mA h g^(-1)after 100 cycles at the current density of 0.1 C.Even after 6000 cycles,the capacity could be still kept at about 225 mA h g^(-1)at 5.0 C.Supported by the detailed kinetic analysis,the designed microspores size induces the increasing redox reaction of nano Se,whilst the surface traits further render the enhancement of pseudo-capacitive contributions.Moreover,after cycling,the product Sex(x<4)in pores serves as the primary active material.Given this,the work is anticipated to provide an effective strategy for advanced electrodes for Na-Se systems.展开更多
Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices...Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices such as white light emitting diode(W-LED),plant cultivation LED,and temperature thermometer.Up to now,Mn^(4+)has been widely introduced into the lattices of various inorganic hosts for brightly redemitting phosphors.However,how to correlate the structure-activity relationship between host framework,luminescence property,and photoelectric device is urgently demanded.In this review,we thoroughly summarize the recent advances of Mn^(4+)doped phosphors.Meanwhile,several strategies like co-doping and defect passivation for improving Mn^(4+)emission are also discussed.Most importantly,the relationship between the protocols for tailoring the structures of Mn^(4+)doped phosphors,increased luminescence performance,and the targeted devices with efficient photoelectric and energy conversion efficiency is deeply correlated.Finally,the challenges and perspectives of Mn^(4+)doped phosphors for practical applications are anticipated.We cordially anticipate that this review can deliver a deep comprehension of not only Mn^(4+)luminescence mechanism but also the crystal structure tailoring strategy of phosphors,so as to spur innovative thoughts in designing advanced phosphors and deepening the applications.展开更多
Six novel hydrolytically degradable polyesters were synthesized from thiodipropionic acid(TDPA)and five diols by melt polycondensation,and characterized by FT-IR,1H NMR,gel permeation chromatography,differential scann...Six novel hydrolytically degradable polyesters were synthesized from thiodipropionic acid(TDPA)and five diols by melt polycondensation,and characterized by FT-IR,1H NMR,gel permeation chromatography,differential scanning calorimetry and thermogravimetry analysis.The polystyrene-equivalent number-average(Mn)and weight-average molecular weight(Mw)of these polyesters ranged from 4900-11100 Da and 7900-20879 Da,respectively,with PDI values of 1.48-1.98.The melting point varied from 62.3-127.9℃,and the 50%mass-loss temperature ranged between 387-417℃.The degradation of these polyesters was studied in terms of relative weight loss in distilled water at different pH.Weight losses of 14%-26%were obtained at pH 7.0,26%-38%at pH 6.0,and 32%-43%at pH 8.3 over a 20-week period.The ecotoxicity study suggested that safety of the synthesized polyesters for the eisenia foetida.These results indicate that these polyesters have a combination of good thermal and degradability behaviors,which can be tailored through selection of the diol monomers used in the synthesis.展开更多
Background Physical activity(PA)can improve the physical and psychological health of prostate and colorectal cancer survivors,but PA behavior change maintenance is necessary for long-term health benefits.OncoActive is...Background Physical activity(PA)can improve the physical and psychological health of prostate and colorectal cancer survivors,but PA behavior change maintenance is necessary for long-term health benefits.OncoActive is a print-and web-based intervention in which prostate and colorectal cancer patients and survivors receive automatically generated,personalized feedback aimed at integrating PA into daily life to increase and maintain PA.We evaluated the long-term outcomes of OncoActive by examining the 12-month follow-up differences between OncoActive and a control group,and we explored whether PA was maintained during a 6-month non-intervention follow-up period.Methods Prostate or colorectal cancer patients were randomly assigned to an OncoActive(n=249)or a usual care waitlist control group(n=229).OncoActive participants received PA advice and a pedometer.PA outcomes(i.e.,ActiGraph and self-report moderate-to-vigorous intensity PA(MVPA)min/week and days with≥30 min PA)and health-related outcomes(i.e.,fatigue,depression,physical functioning)were assessed at baseline,6 months,and 12 months.Differences between groups and changes over time were assessed with multilevel linear regressions for the primary outcome(ActiGraph MVPA min/week)and all additional outcomes.Results At 12 months,OncoActive participants did not perform better than control group participants at ActiGraph MVPA min/week,self-report MVPA min/week,or ActiGraph days with PA.Only self-report days with PA were significantly higher in OncoActive compared to the control group.For health-related outcomes only long-term fatigue was significantly lower in OncoActive.When exploratively examining PA within OncoActive,the previously found PA effects at the end of the intervention(6 months follow-up)were maintained at 12 months.Furthermore,all PA outcomes improved significantly from baseline to 12 months.The control group showed small but non-significant improvements from 6 months to 12 months(and from baseline to 12 months),resulting in a decline of differences between groups.Conclusion The majority of previously reported significant between-group differences at 6 months follow-up were no longer present at long-term follow-up,possibly because of natural improvement in the control group.At long-term follow-up,fatigue was significantly lower in OncoActive compared to control group participants.Computer-tailored PA advice may give participants an early start toward recovery and potentially contributes to improving long-term health.展开更多
ZrW_(2)O_(8)is a typical isotropic negative thermal expansion material with cubic structure.However,quenching preparation,pressure phase transition and metastable structure influence its practical applications.Adoptin...ZrW_(2)O_(8)is a typical isotropic negative thermal expansion material with cubic structure.However,quenching preparation,pressure phase transition and metastable structure influence its practical applications.Adopting P to part-substitute W for ZrW_(2-x)P_(x)O_(8-0.5x)has decreased the sintering temperature and avoided the quenching process.When x=0.1,ZrW_(1.9)P_(0.1)O_(7.95)with a stable cubic structure can be obtained at 1150℃.The thermal expansion coefficient is tailored with the P content,and phase transition temperature is lowered.When x=0.5,thermal expansion coefficient attains-13.6×10^(-6)℃^(-1),ZrW_(1.5)P_(0.5)O_(7.75)exhibits enhance negative thermal expansion property.The difference of electronegativity leads to the decrease of phase transition temperature with the increase of P content.The different radii of ions lead to new structure of materials when P substitutes more.The results suggest that the P atom plays the stabilization role in the crystal structure of ZrW_(2-x)P_(x)O_(8-0.5x).展开更多
Development of electrodes with high electrocatalytic activity and stability is essential for solving problems that still restrict the extensive application of vanadium redox flow batteries(VRFBs).Here,we designed a no...Development of electrodes with high electrocatalytic activity and stability is essential for solving problems that still restrict the extensive application of vanadium redox flow batteries(VRFBs).Here,we designed a novel negative electrode with superior electrocatalytic activity by tailoring nitrogen functional groups,such as newly formed nitro and pyridinic-N transformed to pyridonic-N,from the prenitrogen-doped electrode.It was experimentally confirmed that an electrode with pyridonic-N and nitro fuctional groups(tailored nitrogen-doped graphite felt,TNGF) has superior electrocatalytic acivity with enhanced electron and mass transfer.Density functional theory calulations demonstrated the pyridonic-N and nitro functional groups promoted the adsorption,charge transfer,and bond formation with the vanadium species,which is consistent with expermental results.In addition,the V2+/V3+redox reaction mechanism on pyridonic-N and nitro functional groups was estabilised based on density functional theory(DFT) results.When TNGF was applied to a VRFB,it enabled enhanced-electrolyte utilization and energy efficiencies(EE) of 57.9% and 64.6%,respectively,at a current density of 250 mA cm^(-2).These results are 18.6% and 8.9% higher than those of VRFB with electrode containing graphitic-N and pyridinicN groups.Interestingly,TNGF-based VRFB still operated with an EE of 59% at a high current density of300 mA cm^(-2).The TNGF-based VRFB exhibited stable cycling performance without noticeable decay of EE over 450 charge-discharge cycles at a current density of 250 mA cm^(-2).The results of this study suggest that introducing pyridonic-N and nitro groups on the electrode is effective for improving the electrochemical performance of VRFBs.展开更多
The recent boom in flexible and wearable electronics requires their powersources not only to be adequately compact but also could undergo extremedeformation without significant degradation in performance. Here, flexib...The recent boom in flexible and wearable electronics requires their powersources not only to be adequately compact but also could undergo extremedeformation without significant degradation in performance. Here, flexibleand tailorable quasi‐solid‐state microsized Ag/Zn batteries (micro‐AZBs)were designed by combining mask‐assisted spray printing and electrochemicaldeposition strategies. The micro‐AZBs display ultrastable outputvoltage, excellent energy, and power densities, as well as stable cycling performance.Furthermore, the micro‐AZBs with desired shapes can be designedin series or in parallel on a flexible chip to output improved voltage or currentwith the internal connection. More importantly, the microelectrodes could besprayed on various substrates. Flexible micro‐AZBs could be achieved onflexible substrates and tailorable micro‐AZBs are obtained when they arefabricated on clothes. They exhibit stable electrochemical performance evenunder bending or cutting states. The novel design of such quasi‐solid‐statemicro‐AZBs would pave a way for the miniaturization and integration ofenergy storage devices.展开更多
The results of an investigation into the effects of various finishing processes on the propertiesof cotton rich mans shirting fabrics are presented and discussed.The KES-FB system was used forthe testing of fabric mec...The results of an investigation into the effects of various finishing processes on the propertiesof cotton rich mans shirting fabrics are presented and discussed.The KES-FB system was used forthe testing of fabric mechanical properties.It is concluded that mercerising cotton rich fabrics is nota cost effective finish process while the optimisation of the bleaching process may bring more bene-fit.The investigation is part of a long term program aimed at the development of an expert systemfor total fabric engineering.展开更多
基金This work was supported by National Key R&D Program of China(2021YFF1200200)Peiyang Talents Project of Tianjin University.
文摘Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
基金financially supported by Joint Foundation of Ministry of Education of China(No.8091B022225)National Natural Science Foundation of China(No.52173078)。
文摘The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.
文摘BACKGROUND Hallux valgus(HV)is a common foot deformity that manifests with increasing age,especially in women.The associated foot pain causes impaired gait and decreases quality of life.Moderate and severe HV is a deformity that is charac-terized by the involvement of lesser rays and requires complex surgical treatment.In this study,we attempted to develop a procedure for this condition.AIM To analyse the treatment results of patients who underwent simultaneous surgical correction of all parts of a static forefoot deformity.METHODS We conducted a prospective clinical trial between 2016 and 2021 in which 30 feet with moderate or severe HV associated with Tailor’s bunion and metatarsalgia were surgically treated via a new method involving surgical correction of all associated problems.This method included a modified Lapidus procedure,M2M3 tarsometatarsal arthrodesis,intermetatarsal fusion of the M4 and M5 bases,and the use of an original external fixation apparatus to enhance correction power.Preoperative,postoperative,and final follow-up radiographic data and American Orthopaedic Foot and Ankle Society(AOFAS)scores were compared,and P values<0.05 were considered to indicate statistical significance.RESULTS The study included 28 females(93.3%)and 2 males feet(6.7%),20(66.7%)of whom had a moderate degree of HV and 10(33.3%)of whom had severe deformity.M2 and M3 metatarsalgia was observed in 21 feet,and 9 feet experienced pain only at M2.The mean follow-up duration was 11 months.All patients had good correction of the HV angle[preoperative median,36.5 degrees,interquartile range(IQR):30-45;postoperative median,10 degrees,IQR:8.8-10;follow-up median,11.5 degrees,IQR:10-14;P<0.01].At follow-up,metatarsalgia was resolved in most patients(30 vs 5).There was a clinically negligible decrease in the corrected angles at the final follow-up,and the overall AOFAS score was significantly better(median,65 points,IQR:53.8-70;vs 80 points,IQR:75-85;P<0.01).CONCLUSION The developed method showed good sustainability of correction power in a small sample of patients at the one-year follow-up.Randomized clinical trials with larger samples,as well as long-term outcome assessments,are needed in the future.
文摘Auxetic materials are cellular materials with a unique property of negative Poisson’s ratio.The auxeticity and performance of these metamaterials utterly depend on the geometrical parameters and loading direction.For the first time,the quasi-static uniaxial compression performance of fused filament fabricated re-entrant diamond auxetic metamaterial is evaluated in the x-direction(in-plane)and z-direction(out-of-plane).The most commonly used thermoplastic feedstock,Acrylonitrile butadiene styrene,is considered a material of choice.The effect of influential geometrical parameters of the re-entrant diamond structure and printing parameter is systematically studied using Taguchi’s design of experiments.Grey-based multi-objective optimisation technique has been adopted to arrive at the optimal structure.Efforts are made to improve the stiffness and strength of the structure with fibre reinforcements.Micro glass fibre reinforcements have enhanced specific strength and stiffness in both in-plane and out-ofplane directions.A sevenfold and thirteen times increase in specific strength and energy absorption is evident for glass fibre-reinforced structures in out-of-plane directions compared to in-plane ones.Proper tuning of geometrical parameters of the re-entrant diamond structure can result in a Poisson’s ratio of up to-3.49 when tested in the x-direction.The parametric study has illustrated the tailorability of the structure according to the application requirements.The statistical study has signified each considered parameter’s contribution to the compression performance characteristics of the 3D printed re-entrant diamond auxetic metamaterial.
基金supports from the National Key R&D Program of China (No. 2021YFB2802000 and 2021YFB2800500)the National Natural Science Foundation of China (Grant Nos. U20A20211, 51902286, 61775192, 61905215, and 62005164)+2 种基金Key Research Project of Zhejiang Labthe State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences)China Postdoctoral Science Foundation (2021M702799)。
文摘Long-term optical data storage(ODS)technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data.Here,ODS with an ultralong lifetime of 2×10^(7)years is attained with single ultrafast laser pulse induced reduction of Eu^(3+)ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses.We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm^(2).Furthermore,the active ions of Eu^(2+)exhibit strong and broadband emission with the full width at half maximum reaching 190 nm,and the photoluminescence(PL)is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses.The developed technology and materials will be of great significance in photonic applications such as long-term ODS.
基金the Fundamental Research Grant Scheme (FRGS),grant No.FRGS/1/2021/TK0/UKM/01/5 funded by the Ministry of Higher Education (MOHE)。
文摘This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells(S-SOFCs),a relatively new SOFC technology.To this end,this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC,discussing both the selection of materials and the challenges that come with making that choice.This article discussed the relevant factors involved in developing electrodes with nano/microstructure.Nanocomposites,e.g.,non-cobalt and lithiated materials,are only a few of the electrode types now being researched.Furthermore,the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure.Insights into the possibilities and difficulties of the material are discussed.To achieve the desired microstructural features,this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process.The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical.This article also provides important and useful recommendations for the strategic design of electrode materials researchers.
基金the Natural Science Foundation of Fujian Province(2021J01299)school-enterprise cooperation project supported by Shandong Hongao Automotive Lightweight Technology Co.,Ltd.
文摘The mechanical mismatch effect frequently occurs in the dissimilar materials welded joints, thus leading to plastic gradient at the interface between the weld and heat-affected zone(HAZ). In this work, the boron steel and Q235 steel were selected for laser tailor welding,which obtained boron/Q235 steel tailor-welded blanks(TWBs). The method of welding with synchronous thermal field(WSTF) was utilized to eliminate the mismatch effects in TWBs. The WSTF was employed to adjust cooling rates of welded joints, thereby intervening in the solidification behaviors and phase transition of the molten pool. Boron/Q235 steel was welded by laser under conventional and WSTF(300-600 ℃) conditions, respectively. The results show that the microstructure of weld and HAZ(boron) was adequately transitioned to ferrites and pearlites instead of abundant martensite by WSTF. Meanwhile, the discrepancy of microhardness and yield strength between various regions of welded joints was greatly reduced, and the overall plasticity of welded joints was enhanced by WSTF. It is indicated that WSTF can effectively contribute to reducing plastic gradient and achieving mechanical congruity in welded joints by restraining the generation of hardbrittle phase, which could significantly improve the formability of TWBs in subsequent hot stamping.
基金supported by the National Natural Science Foundation of China under Grant No. 52072196, 52002199, 52002200, 52102106Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No. ZR2020ZD09+5 种基金the Natural Science Foundation of Shandong Province under Grant No. ZR2019BEM042, ZR2020QE063the Innovation and Technology Program of Shandong Province under Grant No. 2020KJA004the Taishan Scholars Program of Shandong Province under No. ts201511034Postdoctoral Program in Qingdao under No. QDBSH20220202019the innovation Capability Improvement Project of Small and Medium-sized Technological Enterprises in Shandong Province under No. 2021TSGC1156the Financial Support From the Qingdao West Coast New Area Science and Technology Project under No. 2020-104。
文摘Defect engineering presents great promise in addressing lower specific capacity,sluggish diffusion kinetics and poor cycling life issues in energy storage devices.Herein,multidimensional(0D/2D/3D) structural defects are constructed in WO_(3)/MoO_(2) simultaneously via competing for and sharing with O atoms during simple hydrothermal process.OD and 2D defects tailor local electron,activating more sites and generating built-in electric fields to yield ion reservoir,meanwhile,3D defect owning lower anisotropic property tailors Mg^(2+) diffusion channels to fully exploit Mg^(2+) adsorbed sites induced by OD and 2D defects,enhance the kinetics and maintain structural stability.Benefitted from synergistic effect of 0D/2D/3D structural defects,the designed WO_(3)/MoO_(2) shows the higher specific capacity(112.8 mA h g^(-1) at 50 mA g^(-1) with average attenuation rate per cycle of 0.068%),superior rate capability and excellent cycling stability(specific capacity retention of 80% after 1500 cycles at 1000 mA g^(-1)).This strategy provides design ideas of introducing multidimensional structural defects for tailoring local electron and microstructure to improve energy storage property.
基金financially supported by the National Natural Science Foundation of China(No.21973028,52004334)the outstanding youth science fund of Henan Normal University(No.2021JQ02),Natural Science Foundation of Hunan Province(2021JJ20073)+2 种基金National Key Research and Development Program of China(2018YFC1901601 and 2019YFC1907801)Scientific Research Fund of Hunan Provincial Education Department,grant number(20C0085)Collaborative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,Foundation of State Key Laboratory of Mineral Processing(BGRIMM-KJSKL-2017-13)。
文摘Attracted by high energy density and considerable conductivity of selenium(Se),Na-Se batteries have been deemed promising energy-storage systems.But,it still suffers from sluggish kinetic behaviors and similar“shuttling effect”to S-electrodes.Herein,utilizing uniform hollow carbon spheres as precursors,Se-material is effectively loaded through vapor-infiltration method.Owing to the distribution of optimized pores,the content of microspores could be up to~60%(<2 nm),serving important roles for the physical confinement effect.Meanwhile,the rich oxygen-containing groups and N-elements could be noted,inducing the evolution of electron-moving behaviors.More significantly,assisted by the interfacial C-Se bonds and tiny Se distributions,Se electrodes are activated during cycling.Used as cathodes for Na-Se systems,the as-resulted samples display a capacity of 593.9 mA h g^(-1)after 100 cycles at the current density of 0.1 C.Even after 6000 cycles,the capacity could be still kept at about 225 mA h g^(-1)at 5.0 C.Supported by the detailed kinetic analysis,the designed microspores size induces the increasing redox reaction of nano Se,whilst the surface traits further render the enhancement of pseudo-capacitive contributions.Moreover,after cycling,the product Sex(x<4)in pores serves as the primary active material.Given this,the work is anticipated to provide an effective strategy for advanced electrodes for Na-Se systems.
基金financially supported by the National Natural Science Foundation of China(52072101,51972088,U20A20122 and U1663225)the Program for Changjiang Scholars and Innovative Research Team in University(IRT_15R52)of the Chinese Ministry of Education+2 种基金the Program of Introducing Talents of Discipline to Universities-Plan 111(Grant No.B20002)from the Ministry of Science and Technology and the Ministry of Education of ChinaHubei Provincial Department of Education for the“Chutian Scholar”programsupported by the European Commission Interreg V FranceWallonie-Vlaanderen project“Depollut Air”。
文摘Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices such as white light emitting diode(W-LED),plant cultivation LED,and temperature thermometer.Up to now,Mn^(4+)has been widely introduced into the lattices of various inorganic hosts for brightly redemitting phosphors.However,how to correlate the structure-activity relationship between host framework,luminescence property,and photoelectric device is urgently demanded.In this review,we thoroughly summarize the recent advances of Mn^(4+)doped phosphors.Meanwhile,several strategies like co-doping and defect passivation for improving Mn^(4+)emission are also discussed.Most importantly,the relationship between the protocols for tailoring the structures of Mn^(4+)doped phosphors,increased luminescence performance,and the targeted devices with efficient photoelectric and energy conversion efficiency is deeply correlated.Finally,the challenges and perspectives of Mn^(4+)doped phosphors for practical applications are anticipated.We cordially anticipate that this review can deliver a deep comprehension of not only Mn^(4+)luminescence mechanism but also the crystal structure tailoring strategy of phosphors,so as to spur innovative thoughts in designing advanced phosphors and deepening the applications.
基金Funded by the Program (BG20190227001)of High-end Foreign Experts of the State Administration of Foreign Experts Affairs (SAFEA)the Coal Conversion and New Carbon Materials Hubei Key Laboratory at Wuhan University of Science and Technology (WKDM202005)。
文摘Six novel hydrolytically degradable polyesters were synthesized from thiodipropionic acid(TDPA)and five diols by melt polycondensation,and characterized by FT-IR,1H NMR,gel permeation chromatography,differential scanning calorimetry and thermogravimetry analysis.The polystyrene-equivalent number-average(Mn)and weight-average molecular weight(Mw)of these polyesters ranged from 4900-11100 Da and 7900-20879 Da,respectively,with PDI values of 1.48-1.98.The melting point varied from 62.3-127.9℃,and the 50%mass-loss temperature ranged between 387-417℃.The degradation of these polyesters was studied in terms of relative weight loss in distilled water at different pH.Weight losses of 14%-26%were obtained at pH 7.0,26%-38%at pH 6.0,and 32%-43%at pH 8.3 over a 20-week period.The ecotoxicity study suggested that safety of the synthesized polyesters for the eisenia foetida.These results indicate that these polyesters have a combination of good thermal and degradability behaviors,which can be tailored through selection of the diol monomers used in the synthesis.
基金funded by the Dutch Cancer Society (Koningin Wilhelmina Kankerfonds Kankerbestrijding,Grant No.NOU2012-5585).
文摘Background Physical activity(PA)can improve the physical and psychological health of prostate and colorectal cancer survivors,but PA behavior change maintenance is necessary for long-term health benefits.OncoActive is a print-and web-based intervention in which prostate and colorectal cancer patients and survivors receive automatically generated,personalized feedback aimed at integrating PA into daily life to increase and maintain PA.We evaluated the long-term outcomes of OncoActive by examining the 12-month follow-up differences between OncoActive and a control group,and we explored whether PA was maintained during a 6-month non-intervention follow-up period.Methods Prostate or colorectal cancer patients were randomly assigned to an OncoActive(n=249)or a usual care waitlist control group(n=229).OncoActive participants received PA advice and a pedometer.PA outcomes(i.e.,ActiGraph and self-report moderate-to-vigorous intensity PA(MVPA)min/week and days with≥30 min PA)and health-related outcomes(i.e.,fatigue,depression,physical functioning)were assessed at baseline,6 months,and 12 months.Differences between groups and changes over time were assessed with multilevel linear regressions for the primary outcome(ActiGraph MVPA min/week)and all additional outcomes.Results At 12 months,OncoActive participants did not perform better than control group participants at ActiGraph MVPA min/week,self-report MVPA min/week,or ActiGraph days with PA.Only self-report days with PA were significantly higher in OncoActive compared to the control group.For health-related outcomes only long-term fatigue was significantly lower in OncoActive.When exploratively examining PA within OncoActive,the previously found PA effects at the end of the intervention(6 months follow-up)were maintained at 12 months.Furthermore,all PA outcomes improved significantly from baseline to 12 months.The control group showed small but non-significant improvements from 6 months to 12 months(and from baseline to 12 months),resulting in a decline of differences between groups.Conclusion The majority of previously reported significant between-group differences at 6 months follow-up were no longer present at long-term follow-up,possibly because of natural improvement in the control group.At long-term follow-up,fatigue was significantly lower in OncoActive compared to control group participants.Computer-tailored PA advice may give participants an early start toward recovery and potentially contributes to improving long-term health.
基金Project supported by the Key Scientific and Technological Research Projects of Henan Province,China(Grant Nos.222102220021 and 222102220056)。
文摘ZrW_(2)O_(8)is a typical isotropic negative thermal expansion material with cubic structure.However,quenching preparation,pressure phase transition and metastable structure influence its practical applications.Adopting P to part-substitute W for ZrW_(2-x)P_(x)O_(8-0.5x)has decreased the sintering temperature and avoided the quenching process.When x=0.1,ZrW_(1.9)P_(0.1)O_(7.95)with a stable cubic structure can be obtained at 1150℃.The thermal expansion coefficient is tailored with the P content,and phase transition temperature is lowered.When x=0.5,thermal expansion coefficient attains-13.6×10^(-6)℃^(-1),ZrW_(1.5)P_(0.5)O_(7.75)exhibits enhance negative thermal expansion property.The difference of electronegativity leads to the decrease of phase transition temperature with the increase of P content.The different radii of ions lead to new structure of materials when P substitutes more.The results suggest that the P atom plays the stabilization role in the crystal structure of ZrW_(2-x)P_(x)O_(8-0.5x).
基金financially supported by the Research Program from Korea Institute of Industrial Technology(EM220011)the Technology Innovation Program(20020229,Development of technology for manufacturing catalysts and electrode parts by use of low contents precious metals of rare metals) funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)+2 种基金the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(2022R1F1A1072569)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science,ICT & Future Planning(NRF2020R1C1C1010493)“Regional Innovation Strategy(RIS)” through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE)(2021RIS-004)。
文摘Development of electrodes with high electrocatalytic activity and stability is essential for solving problems that still restrict the extensive application of vanadium redox flow batteries(VRFBs).Here,we designed a novel negative electrode with superior electrocatalytic activity by tailoring nitrogen functional groups,such as newly formed nitro and pyridinic-N transformed to pyridonic-N,from the prenitrogen-doped electrode.It was experimentally confirmed that an electrode with pyridonic-N and nitro fuctional groups(tailored nitrogen-doped graphite felt,TNGF) has superior electrocatalytic acivity with enhanced electron and mass transfer.Density functional theory calulations demonstrated the pyridonic-N and nitro functional groups promoted the adsorption,charge transfer,and bond formation with the vanadium species,which is consistent with expermental results.In addition,the V2+/V3+redox reaction mechanism on pyridonic-N and nitro functional groups was estabilised based on density functional theory(DFT) results.When TNGF was applied to a VRFB,it enabled enhanced-electrolyte utilization and energy efficiencies(EE) of 57.9% and 64.6%,respectively,at a current density of 250 mA cm^(-2).These results are 18.6% and 8.9% higher than those of VRFB with electrode containing graphitic-N and pyridinicN groups.Interestingly,TNGF-based VRFB still operated with an EE of 59% at a high current density of300 mA cm^(-2).The TNGF-based VRFB exhibited stable cycling performance without noticeable decay of EE over 450 charge-discharge cycles at a current density of 250 mA cm^(-2).The results of this study suggest that introducing pyridonic-N and nitro groups on the electrode is effective for improving the electrochemical performance of VRFBs.
基金This study was supported by National Key R&D Programof China(Grant No.2017YFA0206701)National Natural Science Foundation of China(Grant No.51822205 and 21875121)+2 种基金China Postdoctoral Science Foundation(Grant No.2019M650045)Ministry of Education of China(Grant No.B12015)Natural Science Foundation of Tianjin(Grant No.18JCJQJC46300).
文摘The recent boom in flexible and wearable electronics requires their powersources not only to be adequately compact but also could undergo extremedeformation without significant degradation in performance. Here, flexibleand tailorable quasi‐solid‐state microsized Ag/Zn batteries (micro‐AZBs)were designed by combining mask‐assisted spray printing and electrochemicaldeposition strategies. The micro‐AZBs display ultrastable outputvoltage, excellent energy, and power densities, as well as stable cycling performance.Furthermore, the micro‐AZBs with desired shapes can be designedin series or in parallel on a flexible chip to output improved voltage or currentwith the internal connection. More importantly, the microelectrodes could besprayed on various substrates. Flexible micro‐AZBs could be achieved onflexible substrates and tailorable micro‐AZBs are obtained when they arefabricated on clothes. They exhibit stable electrochemical performance evenunder bending or cutting states. The novel design of such quasi‐solid‐statemicro‐AZBs would pave a way for the miniaturization and integration ofenergy storage devices.
文摘The results of an investigation into the effects of various finishing processes on the propertiesof cotton rich mans shirting fabrics are presented and discussed.The KES-FB system was used forthe testing of fabric mechanical properties.It is concluded that mercerising cotton rich fabrics is nota cost effective finish process while the optimisation of the bleaching process may bring more bene-fit.The investigation is part of a long term program aimed at the development of an expert systemfor total fabric engineering.