pplying genetic algorithm to inversion of seismic moment tensor solution and using the data of P waveform from digital network and initial motion directions of P waves of Taiwan network stations, we studied the moment...pplying genetic algorithm to inversion of seismic moment tensor solution and using the data of P waveform from digital network and initial motion directions of P waves of Taiwan network stations, we studied the moment tensor solutions and focal parameters of the earthquake of M=7.3 on 16 September of 1994 in Taiwan Strait and other four quakes of ML5.8 in the near region (21°~26°N, 115°~120°E). Among the five earthquakes, the quake of M=7.3 on September 16, 1994 in Taiwan Strait is the strongest one in the southeastern coast area since Nan′ao earthquake of M=7.3 in 1918. The results show that moment tensor solution of M=7.3 earthquake is mainly doublecouple component, and is normal fault whose fault plane is near NW. The strike of the fault plane resembles that of the distributive bands of earthquakes before the main event and fracture pattern shown by aftershocks. The tension stress axis of focal mechanism is about horizontal, near in NE strike, the compressive stress axis is approximately vertical, near in NWW strike. It seems that this quake is controlled by the force of Philippine plate′s pressing Eurasian plate in NW direction. But from the viewpoint of P axis of near vertical and T axis of near horizontal, it is a normal fault of strong tensibility. There are relatively big difference between focal mechanism solution of this quake and those of the four other strong quakes. The complexity of source mechanism solution of these quakes represents the complexity of the process of the strait earthquake sequences.展开更多
Using the focal mechanism solutions and slip distribution model data of the Taiwan Straits MS7.3 earthquake on September 16, 1994, we calculate the static Coulomb stress changes stemming from the earthquake. Based on ...Using the focal mechanism solutions and slip distribution model data of the Taiwan Straits MS7.3 earthquake on September 16, 1994, we calculate the static Coulomb stress changes stemming from the earthquake. Based on the distribution of aftershocks and stress field, as well as the location of historical earthquakes, we analyze the Coulomb stress change triggered by the Taiwan Straits MS7.3 earthquake. The result shows that the static Coulomb stress change obtained by forward modeling based on the slip distribution model is quite consistent with the location of aftershocks in the areas far away from the epicenter. Ninety percent of aftershocks occurred in the stress increased areas. The Coulomb stress change is not entirely consistent with the distribution of aftershocks near the epicenter. It is found that Coulomb stress change can better reflect the aftershock distribution far away from the epicenter, while such corresponding relationship becomes quite complex near the epicenter. Through the calculation of the Coulomb stress change, we find that the stress increases in the southwest part of the Min-Yue (Fujian-Guangdong) coastal fault zone, which enhances the seismic activity. Therefore, it is deemed that the sea area between Nanpeng Island and Dongshan Island, where the Min-Yue coastal fault zone intersects with the NW-trending Shanghang-Dongshan fault, has a high seismic risk.展开更多
Earthquake activities in history are characterized by active and quiet periods. In the quiet period, the place where earthquake M_≥6 occurred means more elastic energy store and speedy energy accumulation there. When...Earthquake activities in history are characterized by active and quiet periods. In the quiet period, the place where earthquake M_≥6 occurred means more elastic energy store and speedy energy accumulation there. When an active period of big earthquake activity appeared in wide region, in the place where earthquake (M_≥6) occurred in the past quiet period, the big earthquake with magnitude of 7 or more often occur there. We call the above-mentioned judgement for predicting big earthquake the 'criterion of activity in quiescence'. The criterion is relatively effective for predicting location of big earthquake. In general, error of predicting epicenter is no more than 100 km. According to the criterion, we made successfully a middle-term prediction on the 1996 Lijiang earthquake in Yunnan Province, the error of predicted location is about 50 km. Besides, the 1994 Taiwan strait earthquake (M_s=7.3), the 1995 Yunnan-Myanmar boundary earthquake (M_s=7.2) and the Mani earthquake (M_s=7.9) in north Tibet are accordant with the retrospective predictions by the 'criterion of activity in quiescence'. The windows of 'activity in quiescence' identified statistically by us are 1940-1945, 1958-1961 and 1979-1986. Using the 'criterion of activity in quiescence' to predict big earthquake in the mainland of China,the earthquake defined by 'activity in quiescence' has magnitude of 6 or more; For the Himalayas seismic belt, the Pacific seismic belt and the north-west boundary seismic belt of Xinjiang, the earthquake defined by 'activity in quiescence' has magnitude of 7, which is corresponding to earthquake with magnitude of much more than 7 in future. For the regions where there are not tectonically and historically a possibility of occurring big earthquake (M_s=7), the criterion of activity in quiescence is not effective.展开更多
文摘pplying genetic algorithm to inversion of seismic moment tensor solution and using the data of P waveform from digital network and initial motion directions of P waves of Taiwan network stations, we studied the moment tensor solutions and focal parameters of the earthquake of M=7.3 on 16 September of 1994 in Taiwan Strait and other four quakes of ML5.8 in the near region (21°~26°N, 115°~120°E). Among the five earthquakes, the quake of M=7.3 on September 16, 1994 in Taiwan Strait is the strongest one in the southeastern coast area since Nan′ao earthquake of M=7.3 in 1918. The results show that moment tensor solution of M=7.3 earthquake is mainly doublecouple component, and is normal fault whose fault plane is near NW. The strike of the fault plane resembles that of the distributive bands of earthquakes before the main event and fracture pattern shown by aftershocks. The tension stress axis of focal mechanism is about horizontal, near in NE strike, the compressive stress axis is approximately vertical, near in NWW strike. It seems that this quake is controlled by the force of Philippine plate′s pressing Eurasian plate in NW direction. But from the viewpoint of P axis of near vertical and T axis of near horizontal, it is a normal fault of strong tensibility. There are relatively big difference between focal mechanism solution of this quake and those of the four other strong quakes. The complexity of source mechanism solution of these quakes represents the complexity of the process of the strait earthquake sequences.
基金sponsored jointly by the National Natural Science Foundation of China(U0933006),National Natural Science Foundation of China(41006030,41176054)the Special Research Program(908Program)of Guangdong Province(GD908-JC-03,GD908-JC-10)
文摘Using the focal mechanism solutions and slip distribution model data of the Taiwan Straits MS7.3 earthquake on September 16, 1994, we calculate the static Coulomb stress changes stemming from the earthquake. Based on the distribution of aftershocks and stress field, as well as the location of historical earthquakes, we analyze the Coulomb stress change triggered by the Taiwan Straits MS7.3 earthquake. The result shows that the static Coulomb stress change obtained by forward modeling based on the slip distribution model is quite consistent with the location of aftershocks in the areas far away from the epicenter. Ninety percent of aftershocks occurred in the stress increased areas. The Coulomb stress change is not entirely consistent with the distribution of aftershocks near the epicenter. It is found that Coulomb stress change can better reflect the aftershock distribution far away from the epicenter, while such corresponding relationship becomes quite complex near the epicenter. Through the calculation of the Coulomb stress change, we find that the stress increases in the southwest part of the Min-Yue (Fujian-Guangdong) coastal fault zone, which enhances the seismic activity. Therefore, it is deemed that the sea area between Nanpeng Island and Dongshan Island, where the Min-Yue coastal fault zone intersects with the NW-trending Shanghang-Dongshan fault, has a high seismic risk.
基金State Natural Science Foundation of China!(49674210).
文摘Earthquake activities in history are characterized by active and quiet periods. In the quiet period, the place where earthquake M_≥6 occurred means more elastic energy store and speedy energy accumulation there. When an active period of big earthquake activity appeared in wide region, in the place where earthquake (M_≥6) occurred in the past quiet period, the big earthquake with magnitude of 7 or more often occur there. We call the above-mentioned judgement for predicting big earthquake the 'criterion of activity in quiescence'. The criterion is relatively effective for predicting location of big earthquake. In general, error of predicting epicenter is no more than 100 km. According to the criterion, we made successfully a middle-term prediction on the 1996 Lijiang earthquake in Yunnan Province, the error of predicted location is about 50 km. Besides, the 1994 Taiwan strait earthquake (M_s=7.3), the 1995 Yunnan-Myanmar boundary earthquake (M_s=7.2) and the Mani earthquake (M_s=7.9) in north Tibet are accordant with the retrospective predictions by the 'criterion of activity in quiescence'. The windows of 'activity in quiescence' identified statistically by us are 1940-1945, 1958-1961 and 1979-1986. Using the 'criterion of activity in quiescence' to predict big earthquake in the mainland of China,the earthquake defined by 'activity in quiescence' has magnitude of 6 or more; For the Himalayas seismic belt, the Pacific seismic belt and the north-west boundary seismic belt of Xinjiang, the earthquake defined by 'activity in quiescence' has magnitude of 7, which is corresponding to earthquake with magnitude of much more than 7 in future. For the regions where there are not tectonically and historically a possibility of occurring big earthquake (M_s=7), the criterion of activity in quiescence is not effective.