The Taixinan Basin is one of the most potential gas hydrate bearing areas in the South China Sea and abundant gas hydrates have been discovered during expedition in 2013. In this study, geochemical and microbial metho...The Taixinan Basin is one of the most potential gas hydrate bearing areas in the South China Sea and abundant gas hydrates have been discovered during expedition in 2013. In this study, geochemical and microbial methods are combinedly used to characterize the sediments from a shallow piston Core DH_CL_11(gas hydrate free) and a gas hydrate-bearing drilling Core GMGS2-16 in this basin. Geochemical analyses indicate that anaerobic oxidation of methane(AOM) which is speculated to be linked to the ongoing gas hydrate dissociation is taking place in Core DH_CL_11 at deep. For Core GMGS2-16, AOM related to past episodes of methane seepage are suggested to dominate during its diagenetic process; while the relatively enriched δ18O bulk-sediment values indicate that methane involved in AOM might be released from the "episodic dissociation" of gas hydrate.Microbial analyses indicate that the predominant phyla in the bacterial communities are Firmicutes and Proteobacteria(Gammaproteobacteria and Epsilonproteobacteria), while the dominant taxa in the archaeal communities are Marine_Benthic_Group_B(MBGB), Halobacteria, Thermoplasmata, Methanobacteria,Methanomicrobia, Group C3 and MCG. Under parallel experimental operations, comparable dominant members(Firmicutes and MBGB) are found in the piston Core DH_CL_11 and the near surface layer of the long drilling Core GMGS2-16. Moreover, these members have been found predominant in other known gas hydrate bearing cores, and the dominant of MBGB has even been found significantly related to gas hydrate occurrence. Therefore,a high possibility for the existing of gas hydrate underlying Core DH_CL_11 is inferred, which is consistent with the geochemical analyses. In all, combined geochemical and microbiological analyses are more informative in characterizing sediments from gas hydrate-associated areas in the South China Sea.展开更多
A multi beam sonar survey is carried out in the continental slope of the Taixinan Basin to obtain submarine topographic and water column data. The data are processed to obtain water column images. Anomalous water colu...A multi beam sonar survey is carried out in the continental slope of the Taixinan Basin to obtain submarine topographic and water column data. The data are processed to obtain water column images. Anomalous water column images, displaying plume characteristics, are found in gas hydrate enriched areas in the Taixinan Basin.This indicates the presence of natural gas resources in the Taixinan Basin. The multibeam sonar system is shown to provide an accurate and effective approach for detecting sub-sea gas hydrate.展开更多
In 2013, the China Geological Survey and Guangzhou Marine Geological Survey conducted the second Chinese gas hydrate expedition in the northern South China Sea (SCS) and successfully obtained visible gas hydrate sam...In 2013, the China Geological Survey and Guangzhou Marine Geological Survey conducted the second Chinese gas hydrate expedition in the northern South China Sea (SCS) and successfully obtained visible gas hydrate samples. Five of the thirteen drilling sites were cored for further research. In this work, Site GMGS2-08 is selected for the stable isotopic analy- sis of foraminifera present in the boreholes in order to reveal the carbon isotopic characteristics of the foraminifera and their response to methane release in the gas hydrate geological system. Our results show that the methane content at Site GMGS2-08 is extremely high, with headspace methane concentrations up to 39300 μmol L^-1. The hydrocarbon δ^13C values, ranging from -69.4%o to -72.3‰ PDB, distinctly indicate biogenic generation. Based on the δD analytical results (-183‰ to -185‰ SMOW), headspace methane is further discriminated to be microbial gas, derived from CO2 reduction. By isotopic measurement, five light δ^13C events are found in the boreholes from Site GMGS2-08, with foraminiferal δ^13C values being ap- parently lower than the normal variation range found in the glacial-interglacial cycles of the SCS. The δ^13C values of benthic Uvigerina peregrina are extremely depleted (as low as -15.85‰ PDB), while those of planktonic Globigerinoides ruber reach -5.68‰ PDB. Scanning electron micrograph (SEM) studies show that foraminiferal tests have experienced post-depositional alteration, infilled with authigenic carbonate, and the diagenetic mineralization is unlikely to be related to the burial depths. The correlation calculation suggests that the anaerobic oxidation of organic matter has only weak influences on the δ^13C com- position of benthic foraminifera. This means that the anomalous δ^13C depletions are predominantly attributed to the overprint- ing of secondary carbonates derived from the anaerobic oxidation of methane (AOM). Furthermore, the negative δ^13C anoma- lies, coupled with the positive δ^18O anomalies observed at Site GMGS2-08, are most likely the critical pieces of evidence for gas hydrate dissociation in the geological history of the study area.展开更多
基金The Natural Science Foundation of China under contract Nos 91128101,41273054 and 41373007the China Geological Survey Project for South China Sea Gas Hydrate Resource Exploration under contract No.DD20160211+1 种基金the Fundamental Research Funds for the Central Universities under contract No.16lgjc11the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme under contract No.2011
文摘The Taixinan Basin is one of the most potential gas hydrate bearing areas in the South China Sea and abundant gas hydrates have been discovered during expedition in 2013. In this study, geochemical and microbial methods are combinedly used to characterize the sediments from a shallow piston Core DH_CL_11(gas hydrate free) and a gas hydrate-bearing drilling Core GMGS2-16 in this basin. Geochemical analyses indicate that anaerobic oxidation of methane(AOM) which is speculated to be linked to the ongoing gas hydrate dissociation is taking place in Core DH_CL_11 at deep. For Core GMGS2-16, AOM related to past episodes of methane seepage are suggested to dominate during its diagenetic process; while the relatively enriched δ18O bulk-sediment values indicate that methane involved in AOM might be released from the "episodic dissociation" of gas hydrate.Microbial analyses indicate that the predominant phyla in the bacterial communities are Firmicutes and Proteobacteria(Gammaproteobacteria and Epsilonproteobacteria), while the dominant taxa in the archaeal communities are Marine_Benthic_Group_B(MBGB), Halobacteria, Thermoplasmata, Methanobacteria,Methanomicrobia, Group C3 and MCG. Under parallel experimental operations, comparable dominant members(Firmicutes and MBGB) are found in the piston Core DH_CL_11 and the near surface layer of the long drilling Core GMGS2-16. Moreover, these members have been found predominant in other known gas hydrate bearing cores, and the dominant of MBGB has even been found significantly related to gas hydrate occurrence. Therefore,a high possibility for the existing of gas hydrate underlying Core DH_CL_11 is inferred, which is consistent with the geochemical analyses. In all, combined geochemical and microbiological analyses are more informative in characterizing sediments from gas hydrate-associated areas in the South China Sea.
基金The National Key R&D Program of China under contract No.2017YFC0306003the National Natural Science Foundation of China under contract Nos 41506069,41876111 and 40706038
文摘A multi beam sonar survey is carried out in the continental slope of the Taixinan Basin to obtain submarine topographic and water column data. The data are processed to obtain water column images. Anomalous water column images, displaying plume characteristics, are found in gas hydrate enriched areas in the Taixinan Basin.This indicates the presence of natural gas resources in the Taixinan Basin. The multibeam sonar system is shown to provide an accurate and effective approach for detecting sub-sea gas hydrate.
基金supported by the National Natural Science Foundation of China (Grant No. 41372012)the Key Scientific Project from China Geological Survey (Grant No. GZH201100305-06-02)the Key Laboratory of Marine Mineral Resources (Grant No. KLMMR-2013-A-32)
文摘In 2013, the China Geological Survey and Guangzhou Marine Geological Survey conducted the second Chinese gas hydrate expedition in the northern South China Sea (SCS) and successfully obtained visible gas hydrate samples. Five of the thirteen drilling sites were cored for further research. In this work, Site GMGS2-08 is selected for the stable isotopic analy- sis of foraminifera present in the boreholes in order to reveal the carbon isotopic characteristics of the foraminifera and their response to methane release in the gas hydrate geological system. Our results show that the methane content at Site GMGS2-08 is extremely high, with headspace methane concentrations up to 39300 μmol L^-1. The hydrocarbon δ^13C values, ranging from -69.4%o to -72.3‰ PDB, distinctly indicate biogenic generation. Based on the δD analytical results (-183‰ to -185‰ SMOW), headspace methane is further discriminated to be microbial gas, derived from CO2 reduction. By isotopic measurement, five light δ^13C events are found in the boreholes from Site GMGS2-08, with foraminiferal δ^13C values being ap- parently lower than the normal variation range found in the glacial-interglacial cycles of the SCS. The δ^13C values of benthic Uvigerina peregrina are extremely depleted (as low as -15.85‰ PDB), while those of planktonic Globigerinoides ruber reach -5.68‰ PDB. Scanning electron micrograph (SEM) studies show that foraminiferal tests have experienced post-depositional alteration, infilled with authigenic carbonate, and the diagenetic mineralization is unlikely to be related to the burial depths. The correlation calculation suggests that the anaerobic oxidation of organic matter has only weak influences on the δ^13C com- position of benthic foraminifera. This means that the anomalous δ^13C depletions are predominantly attributed to the overprint- ing of secondary carbonates derived from the anaerobic oxidation of methane (AOM). Furthermore, the negative δ^13C anoma- lies, coupled with the positive δ^18O anomalies observed at Site GMGS2-08, are most likely the critical pieces of evidence for gas hydrate dissociation in the geological history of the study area.