A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with ...A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.展开更多
This paper deals with the exponential stability of impulsive Takagi-Sugeno fuzzy systems with delay. Impulsive control and delayed fuzzy control are applied to the system, and the criterion on exponential stability ex...This paper deals with the exponential stability of impulsive Takagi-Sugeno fuzzy systems with delay. Impulsive control and delayed fuzzy control are applied to the system, and the criterion on exponential stability expressed in terms of linear matrix inequalities (LMIs) is presented.展开更多
为提高静止无功补偿器(static var compensator,SVC)应对直流电弧炉等冲击性负载的闪变抑制性能,文中在改进Takagi-Sugeno(TS)模糊算法的基础上,提出一种SVC滚动预测控制方法。首先,建立直流电弧炉电气模型并仿真分析其无功特性;然后,...为提高静止无功补偿器(static var compensator,SVC)应对直流电弧炉等冲击性负载的闪变抑制性能,文中在改进Takagi-Sugeno(TS)模糊算法的基础上,提出一种SVC滚动预测控制方法。首先,建立直流电弧炉电气模型并仿真分析其无功特性;然后,针对经典TS模糊预测算法应用于波动负荷时出现的输出异常置0情况,提出一种范围自适应修正的改进方法,该方法能消除一类算法应用机理导致的异常值,从而提高TS模糊算法对波动负荷无功功率预测的可靠性和准确性;最后,基于模型训练时间约束,建立无功功率半周期滚动预测控制模型,提前10 ms预测无功功率,改善了SVC传统控制系统响应的滞后特性。仿真结果表明,相比于SVC传统控制方法,所提方法的平均闪变改善率提高了54.17%,验证了所提方法对闪变现象的抑制效果提升显著。展开更多
This paper deals with the problem of stabilization design for a class of continuous-time Takagi-Sugeno(T-S)fuzzy systems.New stabilization conditions are derived based on a relaxed approach in which both fuzzy Lyapu...This paper deals with the problem of stabilization design for a class of continuous-time Takagi-Sugeno(T-S)fuzzy systems.New stabilization conditions are derived based on a relaxed approach in which both fuzzy Lyapunov functions and staircase membership functions are used.Through the staircase membership functions approximating the continuous membership functions of the given fuzzy model,the information of the membership functions can be brought into the stabilization design of the fuzzy systems,thereby significantly reducing the conservativeness in the existing stabilization conditions of the T-S fuzzy systems.Unlike some previous fuzzy Lyapunov function approaches reported in the literature,the proposed stabilization conditions do not depend on the time-derivative of the membership functions that may be the main source of conservatism when considering fuzzy Lyapunov functions analysis.Moreover,conditions for the solvability of the controller design are written in the form of linear matrix inequalities,but not bilinear matrix inequalities,which are easier to be solved by convex optimization techniques.A simulation example is given to demonstrate the validity of the proposed approach.展开更多
The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype...The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype model for studying chaotic behaviour since it was coined. In this work we take one step further to investigate some fundamental dynamic behaviours of a novel hybrid Takagi-Sugeno (TS) fuzzy Lorenz-type system, which is essentially derived from the delta-operator-based TS fuzzy modelling for complex nonlinear systems, and contains the original Lorenz system of continuous-time TS fuzzy form as a special case. By simply and appropriately tuning the additional parametric perturbations in the two-rule hybrid TS fuzzy Lorenz-type system, complex (two-wing) butterfly attractors observed from this system in the three dimensional (3D) X-Y-Z space are created, which have not yet been reported in the literature, and the forming mechanism of the compound structures have been numerically investigated.展开更多
In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control...In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control from Lyapunov stability theory. The proposed approach offers a systematic design procedure for stabilizing a large class of chaotic systems in the literature about chaos research. The simulation results on Rossler's system verify the effectiveness of the proposed methods.展开更多
By the best approximation theory, it is first proved that the SISO (single-input single-output) linear Takagi-Sugeno (TS) fuzzy systems can approximate an arbitrary polynomial which, according to Weierstrass appro...By the best approximation theory, it is first proved that the SISO (single-input single-output) linear Takagi-Sugeno (TS) fuzzy systems can approximate an arbitrary polynomial which, according to Weierstrass approximation theorem, can uniformly approximate any continuous functions on the compact domain. Then new sufficient conditions for general linear SISO TS fuzzy systems as universal approximators are obtained. Formulae are derived to calculate the number of input fuzzy sets to satisfy the given approximation accuracy. Then the presented result is compared with the existing literature's results. The comparison shows that the presented result needs less input fuzzy sets, which can simplify the design of the fuzzy system, and examples are given to show its effectiveness.展开更多
In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun...In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.展开更多
In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stabili...In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature.展开更多
We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ...We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attraction. Based on the project lemma and classical sector conditions, the conditions for the existence of solutions to this problem are obtained and expressed in terms of a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.展开更多
The analytical structure of a class of typical Takagi Sugeno (TS) fuzzy controllers is revealed in this paper.The TS fuzzy controllers consist of three or more trapezoidal input fuzzy sets, Zadeh fuzzy logic AND opera...The analytical structure of a class of typical Takagi Sugeno (TS) fuzzy controllers is revealed in this paper.The TS fuzzy controllers consist of three or more trapezoidal input fuzzy sets, Zadeh fuzzy logic AND operator,fuzzy rules with linear consequent, and the centriod defuzzifier. The TS fuzzy controllers are proved to be accurately nonlinear PID controllers with gains continuously changing with process output. The analytical expressions of the variable gains of the TS fuzzy controllers are derived and their mathematical characteristics including the bounds and geometrical shape of the gain variation are analyzed. The resulting explicit structures show that the TS fuzzy controllers are inherently nonlinear PID gain scheduling controllers with variable gains in different regions of input space.展开更多
This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear...This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear Matrix Inequality;hence the stability bound of upper bound delay time can be easily estimated. Finally, numeric simulations are given to validate the developed approach.展开更多
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor...The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results.展开更多
This paper introduces a Takagi-Sugeno(T-S)fuzzy regulator design using the negative absolute eigenvalue(NAE)approach for a class of nonlinear and unstable systems.The open-loop system is initially embodied by the trad...This paper introduces a Takagi-Sugeno(T-S)fuzzy regulator design using the negative absolute eigenvalue(NAE)approach for a class of nonlinear and unstable systems.The open-loop system is initially embodied by the traditional T-S fuzzy model and then,all closed-loop subsystems are combined using the proposed Max-Min operator in place of traditional weighted average operator from the controller side to lessen the coupling virtually and simplify the proposed regulator design.For each virtually decoupled closed-loop subsystem,the composite regulators(i.e.,primary and secondary regulators)are designed by the NAE approach based on the enhanced eigenvalue analysis.The Lyapunov function is utilized to guarantee the asymptotic stability of the overall T-S fuzzy control system.The most popular and widely used nonlinear and unstable systems like the electromagnetic levitation system(EMLS)and the inverted cart pendulum(ICP)are simulated for the wide range of the initial conditions and the enormous variation in the disturbance.The transient and steady-state performance of the considered systems using the proposed design are analyzed in terms of the decay rate,settling time and integral errors as IAE,ISE,ITAE,and ITSE to validate the effectiveness of the proposed approach compared to the most popular and traditional parallel distributed compensation(PDC)approach.展开更多
An inverse model control based on TS-fuzzy support vector regression( TS-fuzzy SVR) for a quadrotor aircraft is developed. The TS-kernel is the product of linear combination of input and a cluster of output correspond...An inverse model control based on TS-fuzzy support vector regression( TS-fuzzy SVR) for a quadrotor aircraft is developed. The TS-kernel is the product of linear combination of input and a cluster of output corresponding to a cluster of TS-type fuzzy rules. The output of TS-fuzzy SVR is a linear weighted sum of the TSkernels. The dynamical model of the quad-rotor aircraft is derived. A new control scheme combined with TSfuzzy SVR inverse model control and PID control is presented so that the TS-fuzzy SVR inverse model control enhances capabilities of disturbance rejection and the robustness while the PID control enhances fast responsiveness and reliability of the system. Simulation results show the capabilities of the developed control for the attitude system of quad-rotor aircraft.展开更多
基金supported by the Natural Science Foundation of Guandong Province,China (Grant No 8351009001000002)the National Natural Science Foundation of China (Grant Nos 60572073 and 60871025)
文摘A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.
文摘This paper deals with the exponential stability of impulsive Takagi-Sugeno fuzzy systems with delay. Impulsive control and delayed fuzzy control are applied to the system, and the criterion on exponential stability expressed in terms of linear matrix inequalities (LMIs) is presented.
文摘为提高静止无功补偿器(static var compensator,SVC)应对直流电弧炉等冲击性负载的闪变抑制性能,文中在改进Takagi-Sugeno(TS)模糊算法的基础上,提出一种SVC滚动预测控制方法。首先,建立直流电弧炉电气模型并仿真分析其无功特性;然后,针对经典TS模糊预测算法应用于波动负荷时出现的输出异常置0情况,提出一种范围自适应修正的改进方法,该方法能消除一类算法应用机理导致的异常值,从而提高TS模糊算法对波动负荷无功功率预测的可靠性和准确性;最后,基于模型训练时间约束,建立无功功率半周期滚动预测控制模型,提前10 ms预测无功功率,改善了SVC传统控制系统响应的滞后特性。仿真结果表明,相比于SVC传统控制方法,所提方法的平均闪变改善率提高了54.17%,验证了所提方法对闪变现象的抑制效果提升显著。
基金The National Natural Science Foundation of China(No.60764001,60835001,60875035,61004032)the Postdoctoral Research Fund of Southeast Universitythe Natural Science Foundation of Jiangsu Province(No.BK2008294)
文摘This paper deals with the problem of stabilization design for a class of continuous-time Takagi-Sugeno(T-S)fuzzy systems.New stabilization conditions are derived based on a relaxed approach in which both fuzzy Lyapunov functions and staircase membership functions are used.Through the staircase membership functions approximating the continuous membership functions of the given fuzzy model,the information of the membership functions can be brought into the stabilization design of the fuzzy systems,thereby significantly reducing the conservativeness in the existing stabilization conditions of the T-S fuzzy systems.Unlike some previous fuzzy Lyapunov function approaches reported in the literature,the proposed stabilization conditions do not depend on the time-derivative of the membership functions that may be the main source of conservatism when considering fuzzy Lyapunov functions analysis.Moreover,conditions for the solvability of the controller design are written in the form of linear matrix inequalities,but not bilinear matrix inequalities,which are easier to be solved by convex optimization techniques.A simulation example is given to demonstrate the validity of the proposed approach.
基金Project partially supported by the Natural Science Foundation of Educational Committee of Anhui Province, China (Grant No 2006kj250B).
文摘The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype model for studying chaotic behaviour since it was coined. In this work we take one step further to investigate some fundamental dynamic behaviours of a novel hybrid Takagi-Sugeno (TS) fuzzy Lorenz-type system, which is essentially derived from the delta-operator-based TS fuzzy modelling for complex nonlinear systems, and contains the original Lorenz system of continuous-time TS fuzzy form as a special case. By simply and appropriately tuning the additional parametric perturbations in the two-rule hybrid TS fuzzy Lorenz-type system, complex (two-wing) butterfly attractors observed from this system in the three dimensional (3D) X-Y-Z space are created, which have not yet been reported in the literature, and the forming mechanism of the compound structures have been numerically investigated.
基金Project supported by the Natural Science Foundation of Yangzhou University of China (Grant No KK0513109).
文摘In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control from Lyapunov stability theory. The proposed approach offers a systematic design procedure for stabilizing a large class of chaotic systems in the literature about chaos research. The simulation results on Rossler's system verify the effectiveness of the proposed methods.
文摘By the best approximation theory, it is first proved that the SISO (single-input single-output) linear Takagi-Sugeno (TS) fuzzy systems can approximate an arbitrary polynomial which, according to Weierstrass approximation theorem, can uniformly approximate any continuous functions on the compact domain. Then new sufficient conditions for general linear SISO TS fuzzy systems as universal approximators are obtained. Formulae are derived to calculate the number of input fuzzy sets to satisfy the given approximation accuracy. Then the presented result is compared with the existing literature's results. The comparison shows that the presented result needs less input fuzzy sets, which can simplify the design of the fuzzy system, and examples are given to show its effectiveness.
基金Project(2007AA04Z162) supported by the National High-Tech Research and Development Program of ChinaProjects(2006T089, 2009T062) supported by the University Innovation Team in the Educational Department of Liaoning Province, China
文摘In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.
文摘In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61203047 and 60904023)
文摘We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attraction. Based on the project lemma and classical sector conditions, the conditions for the existence of solutions to this problem are obtained and expressed in terms of a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.
基金Supported by the National Science Foundation(Grant No.69874038)
文摘The analytical structure of a class of typical Takagi Sugeno (TS) fuzzy controllers is revealed in this paper.The TS fuzzy controllers consist of three or more trapezoidal input fuzzy sets, Zadeh fuzzy logic AND operator,fuzzy rules with linear consequent, and the centriod defuzzifier. The TS fuzzy controllers are proved to be accurately nonlinear PID controllers with gains continuously changing with process output. The analytical expressions of the variable gains of the TS fuzzy controllers are derived and their mathematical characteristics including the bounds and geometrical shape of the gain variation are analyzed. The resulting explicit structures show that the TS fuzzy controllers are inherently nonlinear PID gain scheduling controllers with variable gains in different regions of input space.
文摘This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear Matrix Inequality;hence the stability bound of upper bound delay time can be easily estimated. Finally, numeric simulations are given to validate the developed approach.
基金supported by the National Natural Science Foundation of China(6077504760835004)+2 种基金the National High Technology Research and Development Program of China(863 Program)(2007AA04Z244 2008AA04Z214)the Graduate Innovation Fundation of Hunan Province(CX2010B132)
文摘The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results.
文摘This paper introduces a Takagi-Sugeno(T-S)fuzzy regulator design using the negative absolute eigenvalue(NAE)approach for a class of nonlinear and unstable systems.The open-loop system is initially embodied by the traditional T-S fuzzy model and then,all closed-loop subsystems are combined using the proposed Max-Min operator in place of traditional weighted average operator from the controller side to lessen the coupling virtually and simplify the proposed regulator design.For each virtually decoupled closed-loop subsystem,the composite regulators(i.e.,primary and secondary regulators)are designed by the NAE approach based on the enhanced eigenvalue analysis.The Lyapunov function is utilized to guarantee the asymptotic stability of the overall T-S fuzzy control system.The most popular and widely used nonlinear and unstable systems like the electromagnetic levitation system(EMLS)and the inverted cart pendulum(ICP)are simulated for the wide range of the initial conditions and the enormous variation in the disturbance.The transient and steady-state performance of the considered systems using the proposed design are analyzed in terms of the decay rate,settling time and integral errors as IAE,ISE,ITAE,and ITSE to validate the effectiveness of the proposed approach compared to the most popular and traditional parallel distributed compensation(PDC)approach.
基金Sponsored by the Science and Technology Support Program of Jiangsu Province(Grant No.SBE2014070836)
文摘An inverse model control based on TS-fuzzy support vector regression( TS-fuzzy SVR) for a quadrotor aircraft is developed. The TS-kernel is the product of linear combination of input and a cluster of output corresponding to a cluster of TS-type fuzzy rules. The output of TS-fuzzy SVR is a linear weighted sum of the TSkernels. The dynamical model of the quad-rotor aircraft is derived. A new control scheme combined with TSfuzzy SVR inverse model control and PID control is presented so that the TS-fuzzy SVR inverse model control enhances capabilities of disturbance rejection and the robustness while the PID control enhances fast responsiveness and reliability of the system. Simulation results show the capabilities of the developed control for the attitude system of quad-rotor aircraft.