A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with ...A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.展开更多
Sequence analysis technology under big data provides unprecedented opportunities for modern life science. A novel gene coding sequence identification method is proposed in this paper. Firstly, an improved short-time F...Sequence analysis technology under big data provides unprecedented opportunities for modern life science. A novel gene coding sequence identification method is proposed in this paper. Firstly, an improved short-time Fourier transform algorithm based on Morlet wavelet is applied to extract the power spectrum of DNA sequence. Then, threshold value determination method based on kernel fuzzy C-mean clustering is used to combine Signal to Noise Ratio (SNR) data of exon and intron into a sequence, classify the sequence into two types, calculate the weighted sum of two SNR clustering centers obtained and the discrimination threshold value. Finally, exon interval endpoint identification algorithm based on Takagi-Sugeno fuzzy identification model is presented to train Takagi-Sugeno model, optimize model parameters with Levenberg-Marquardt least square method, complete model and determine fuzzy rule. To verify the effectiveness of the proposed method, example tests are conducted on typical gene sequence sample data.展开更多
This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemi...This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
Foot-and-mouth disease(FMD)is a viral disease that affects cloven-hoofed animals including cattle,pigs,and sheep,hence causing export bans among others,causing high economic losses due to reduced productivity.The glob...Foot-and-mouth disease(FMD)is a viral disease that affects cloven-hoofed animals including cattle,pigs,and sheep,hence causing export bans among others,causing high economic losses due to reduced productivity.The global effect of FMD is most felt where livestock rearing forms an important source of income.It is therefore important to understand the modes of transmission of FMD to control its spread and prevent its occurrence.This work intends to address these dynamics by including the efficacy of active migrant animals transporting the disease from one area to another in a fuzzy mathematical modeling framework.Historical models of epidemics are determinable with a set of deterministic parameters and this does not reflect on real-life scenarios as observed in FMD.Fuzzy theory is used in this model as it permits the inclusion of uncertainties in the model;this makes the model more of a reality regarding disease transmission.A time lag,in this case,denotes the incubation period and other time-related factors affecting the spread of FMD and,therefore,is added to the current model for FMD.To that purpose,the analysis of steady states and the basic reproduction number are performed and,in addition,the stability checks are conveyed in the fuzzy environment.For the numerical solution of the model,we derive the Forward Euler Method and the fuzzy delayed non-standard finite difference(FDNSFD)method.Analytical studies of the FDNSFD scheme are performed for convergence,non-negativity,boundedness,and consistency analysis of the numerical projection to guarantee that the numerical model is an accurate discretization of the continuous dynamics of FMD transmission over time.In the following simulation study,we show that the FDNSFD method preserves the characteristics of the constant model and still works if relatively large time steps are employed;this is a bonus over the normal finite difference technique.The study shows how valuable it is to adopt fuzzy theory and time delays when simulating the transmission of the epidemic,especially for such diseases as FMD where uncertainty and migration have a defining role in transmission.This approach gives more sound and flexible grounds for analyzing and controlling the outbreak of FMD in various situations.展开更多
This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel...This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel,is developed to address the inherent limitations of both SFSs and the traditional Delphi technique,particularly in uncertain,complex scenarios.In such contexts,the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations.This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers,encompassing weighted geometric and arithmetic operators alongside fully developed operators tailored for SFZs numbers.Subsequently,a case study and comparative analysis are conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies.Integrating the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant on expert input.Further,this combination serves as a comprehensive tool for decision-makers,enabling them to achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions.The case study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios,showcasing its ability to improve consensus-building processes and enhance decision outcomes.Additionally,the comparative analysis highlights the superiority of the integrated approach over traditional methodologies,underscoring its potential to revolutionize decision-making practices in uncertain environments.展开更多
Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common under...Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common underlying causes.Around 15%of diabetic patients are affected by diabetic foot ulcer in their lifetime.64 million people are affected by diabetics in India and 40000 amputations are done every year.Foot ulcers are evaluated and classified in a systematic and thorough manner to assist in determining the best course of therapy.This paper proposes a novel model which predicts the threat of diabetic foot ulcer using independent agents for various input values and a combination of fuzzy expert systems.The proposed model uses a classification system to distinguish between each fuzzy framework and its parameters.Based on the severity levels necessary prevention,treatment,and medication are recommended.Combining the results of all the fuzzy frameworks derived from its constituent parameters,a risk-specific medication is recommended.The work also has higher accuracy when compared to other related models.展开更多
In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a...In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a more robust method against uncertainties.This paper proposes a new deep learning scheme for modeling and identification applications.The suggested approach is based on non-singleton type-3 fuzzy logic systems(NT3-FLSs)that can support measurement errors and high-level uncertainties.Besides the rule optimization,the antecedent parameters and the level of secondary memberships are also adjusted by the suggested square root cubature Kalmanfilter(SCKF).In the learn-ing algorithm,the presented NT3-FLSs are deeply learned,and their nonlinear structure is preserved.The designed scheme is applied for modeling carbon cap-ture and sequestration problem using real-world data sets.Through various ana-lyses and comparisons,the better efficiency of the proposed fuzzy modeling scheme is verified.The main advantages of the suggested approach include better resistance against uncertainties,deep learning,and good convergence.展开更多
This paper focuses on the stability analysis of nonlinear networked control system with integral quadratic constraints(IQC) performance, dynamic quantization, variable sampling intervals, and communication delays. By ...This paper focuses on the stability analysis of nonlinear networked control system with integral quadratic constraints(IQC) performance, dynamic quantization, variable sampling intervals, and communication delays. By using input-delay and parallel distributed compensation(PDC) techniques, we establish the Takagi-Sugeno(T-S) fuzzy model for the system, in which the sampling period of the sampler and signal transmission delay are transformed to the refreshing interval of a zero-order holder(ZOH). By the appropriate Lyapunov-Krasovskii-based methods, a delay-dependent criterion is derived to ensure the asymptotic stability for the system with IQC performance via the H∞ state feedback control. The efficiency of the method is illustrated on a simulation exampler.展开更多
Purpose-The purpose of this paper is to look at the problem of fault tolerant control(FTC)for discrete time nonlinear system described by Interval Type-2 Takagi–Sugeno(IT2 TS)fuzzy model subjected to stochastic noise...Purpose-The purpose of this paper is to look at the problem of fault tolerant control(FTC)for discrete time nonlinear system described by Interval Type-2 Takagi–Sugeno(IT2 TS)fuzzy model subjected to stochastic noise and actuator faults.Design/methodology/approach–An IT2 fuzzy augmented state observer is first developed to estimate simultaneously the system states and the actuator faults since this estimation is required for the design of the FTC control law.Furthermore,based on the information of the states and the faults estimate,an IT2 fuzzy state feedback controller is conceived to compensate for the faults effect and to ensure a good tracking performance between the healthy system and the faulty one.Sufficient conditions for the existence of the IT2 fuzzy controller and the IT2 fuzzy observer are given in terms of linear matrix inequalities which can be solved using a two-step computing procedure.Findings–The paper opted for simulation results which are applied to the three-tank system.These results are presented to illustrate the effectiveness of the proposed FTC strategy.Originality/value–In this paper,the problem of active FTC design for noisy and faulty nonlinear system represented by IT2 TS fuzzy model is treated.The developed IT2 fuzzy fault tolerant controller is designed such that it can guarantee the stability of the closed-loop system.Moreover,the proposed controller allows to accommodate for faults,presents a satisfactory state tracking performance and outperforms the traditional type-1 fuzzy fault tolerant controller.展开更多
In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control...In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control from Lyapunov stability theory. The proposed approach offers a systematic design procedure for stabilizing a large class of chaotic systems in the literature about chaos research. The simulation results on Rossler's system verify the effectiveness of the proposed methods.展开更多
In the era of big data,traditional regression models cannot deal with uncertain big data efficiently and accurately.In order to make up for this deficiency,this paper proposes a quantum fuzzy regression model,which us...In the era of big data,traditional regression models cannot deal with uncertain big data efficiently and accurately.In order to make up for this deficiency,this paper proposes a quantum fuzzy regression model,which uses fuzzy theory to describe the uncertainty in big data sets and uses quantum computing to exponentially improve the efficiency of data set preprocessing and parameter estimation.In this paper,data envelopment analysis(DEA)is used to calculate the degree of importance of each data point.Meanwhile,Harrow,Hassidim and Lloyd(HHL)algorithm and quantum swap circuits are used to improve the efficiency of high-dimensional data matrix calculation.The application of the quantum fuzzy regression model to smallscale financial data proves that its accuracy is greatly improved compared with the quantum regression model.Moreover,due to the introduction of quantum computing,the speed of dealing with high-dimensional data matrix has an exponential improvement compared with the fuzzy regression model.The quantum fuzzy regression model proposed in this paper combines the advantages of fuzzy theory and quantum computing which can efficiently calculate high-dimensional data matrix and complete parameter estimation using quantum computing while retaining the uncertainty in big data.Thus,it is a new model for efficient and accurate big data processing in uncertain environments.展开更多
Amoebiasis is a parasitic intestinal infection caused by the highly pathogenic amoeba Entamoeba histolytica.It is spread through person-toperson contact or by eating or drinking food or water contaminated with feces.I...Amoebiasis is a parasitic intestinal infection caused by the highly pathogenic amoeba Entamoeba histolytica.It is spread through person-toperson contact or by eating or drinking food or water contaminated with feces.Its transmission rate depends on the number of cysts present in the environment.The traditional models assumed a homogeneous and contradictory transmission with reality.The heterogeneity of its transmission rate is a significant factor when modeling disease dynamics.The heterogeneity of disease transmission can be described mathematically by introducing fuzzy theory.In this context,a fuzzy SEIR Amoebiasis disease model is considered in this study.The equilibrium analysis and reproductive number are studied with fuzziness.Two numerical schemes forward Euler method and a nonstandard finite difference(NSFD)approach,are developed for the learned model,and the results of numerical simulations are presented.The numerical and simulation results reveal that the proposed NSFD method provides an adequate representation of the dynamics of the disease despite the uncertainty and heterogeneity.Moreover,the obtained method generates plausible predictions that regulators can use to support decision-making to design and develop control strategies.展开更多
In this article,a Susceptible-Exposed-Infectious-Recovered(SEIR)epidemic model is considered.The equilibrium analysis and reproduction number are studied.The conventional models have made assumptions of homogeneity in...In this article,a Susceptible-Exposed-Infectious-Recovered(SEIR)epidemic model is considered.The equilibrium analysis and reproduction number are studied.The conventional models have made assumptions of homogeneity in disease transmission that contradict the actual reality.However,it is crucial to consider the heterogeneity of the transmission rate when modeling disease dynamics.Describing the heterogeneity of disease transmission mathematically can be achieved by incorporating fuzzy theory.A numerical scheme nonstandard,finite difference(NSFD)approach is developed for the studied model and the results of numerical simulations are presented.Simulations of the constructed scheme are presented.The positivity,convergence and consistency of the developed technique are investigated using mathematical induction,Jacobean matrix and Taylor series expansions respectively.The suggested scheme preserves all these essential characteristics of the disease dynamical models.The numerical and simulation results reveal that the proposed NSFD method provides an adequate representation of the dynamics of the disease.Moreover,the obtained method generates plausible predictions that can be used by regulators to support the decision-making process to design and develop control strategies.Effects of the natural immunity on the infected class are studied which reveals that an increase in natural immunity can decrease the infection and vice versa.展开更多
Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.T...Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.展开更多
Pneumatic artificial muscles(PAMs)usually exhibit strong hysteresis nonlinearity and time-varying features that bring PAMs modeling and control difficulties.To characterize the hysteresis relation between PAMs’displa...Pneumatic artificial muscles(PAMs)usually exhibit strong hysteresis nonlinearity and time-varying features that bring PAMs modeling and control difficulties.To characterize the hysteresis relation between PAMs’displacement and fluid pressure,a long short term memory(LSTM)neural network model and an adaptive Takagi-Sugeno(T-S)fuzzy model are proposed.Experiments show that both models perform well under the load free conditions,and the adaptive T-S Fuzzy model can furtherly adapt to the change of load with the online adaptation ability.With the concise expression and satisfactory performance of the adaptive T-S Fuzzy model,a model predictive controller is designed and tested.Experiments show that the model predictive controller has a good performance on tracking the given references.展开更多
Grate-kiln-cooler has become a major process of producing iron ore pellets in China. Due to the diversity of the raw materials used and the multi-device multi-variable characteristics,this process still encounters wit...Grate-kiln-cooler has become a major process of producing iron ore pellets in China. Due to the diversity of the raw materials used and the multi-device multi-variable characteristics,this process still encounters with control problem. An attempt was proposed to deal with this issue. The three-device-integrated feature of the process was firstly analyzed to obtain control strategy,and then an intelligent control system using a combination of expert system approach and Takagi-Sugeno( T-S) fuzzy model was developed. Expert system approach was used to diagnose and remedy the abnormal conditions,while T-S fuzzy model was used to stabilize the thermal state. In the construction of T-S fuzzy rules,antecedents were identified by fuzzy c-mean clustering algorithm incorporated with subtractive clustering algorithm,and consequent parameters were identified by recursive least square algorithm. The control system was applied in a Chinese pelletizing plant and the application results demonstrated its effectiveness of stabilizing the thermal states within three devices.展开更多
The reasonable determination of ecological flow is of great significance for the efforts to promote the transformation of water ecological environmental protection from pollution management to synergistic management o...The reasonable determination of ecological flow is of great significance for the efforts to promote the transformation of water ecological environmental protection from pollution management to synergistic management of water resources,water ecology and water environment,and to promote them in an integrated manner.This paper analyzed and calculated the ecological flow process of the Bangsha River diversion power station using the minimum ecological flow method,the annual spreading method,the improved annual spreading method,the NGPRP method,and the month-by-month frequency method,and evaluated the reasonableness of the process and results of the ecological flow calculations by using the fuzzy evaluation model established.The study showed that the minimum ecological flow rate determined by improving the coupling of the spreading method and the NGPRP method was the best,and the suitable ecological flow rate determined by the month-by-month frequency method was the best;the minimum ecological flow rate of the Bangsha River diversion power station was at 0.43-4.21 m 3/s,and the suitable ecological flow rate was at 0.56-4.94 m 3/s,and the trend of its change showed the trend of first increasing and then decreasing,and the trend of change from January to July showed the trend of first increasing and then decreasing.Its trend of change showed an increasing and then decreasing trend,from January to July showed a gradually increasing trend,from August to December showed a gradually decreasing trend.It aimed to provide a theoretical basis for the reasonable determination of the ecological flow of the river hydropower station.展开更多
基金supported by the Natural Science Foundation of Guandong Province,China (Grant No 8351009001000002)the National Natural Science Foundation of China (Grant Nos 60572073 and 60871025)
文摘A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi-Sugeno (TS) fuzzy IF-THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.
文摘Sequence analysis technology under big data provides unprecedented opportunities for modern life science. A novel gene coding sequence identification method is proposed in this paper. Firstly, an improved short-time Fourier transform algorithm based on Morlet wavelet is applied to extract the power spectrum of DNA sequence. Then, threshold value determination method based on kernel fuzzy C-mean clustering is used to combine Signal to Noise Ratio (SNR) data of exon and intron into a sequence, classify the sequence into two types, calculate the weighted sum of two SNR clustering centers obtained and the discrimination threshold value. Finally, exon interval endpoint identification algorithm based on Takagi-Sugeno fuzzy identification model is presented to train Takagi-Sugeno model, optimize model parameters with Levenberg-Marquardt least square method, complete model and determine fuzzy rule. To verify the effectiveness of the proposed method, example tests are conducted on typical gene sequence sample data.
基金the support of Prince Sultan University for paying the article processing charges(APC)of this publication.
文摘This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
文摘Foot-and-mouth disease(FMD)is a viral disease that affects cloven-hoofed animals including cattle,pigs,and sheep,hence causing export bans among others,causing high economic losses due to reduced productivity.The global effect of FMD is most felt where livestock rearing forms an important source of income.It is therefore important to understand the modes of transmission of FMD to control its spread and prevent its occurrence.This work intends to address these dynamics by including the efficacy of active migrant animals transporting the disease from one area to another in a fuzzy mathematical modeling framework.Historical models of epidemics are determinable with a set of deterministic parameters and this does not reflect on real-life scenarios as observed in FMD.Fuzzy theory is used in this model as it permits the inclusion of uncertainties in the model;this makes the model more of a reality regarding disease transmission.A time lag,in this case,denotes the incubation period and other time-related factors affecting the spread of FMD and,therefore,is added to the current model for FMD.To that purpose,the analysis of steady states and the basic reproduction number are performed and,in addition,the stability checks are conveyed in the fuzzy environment.For the numerical solution of the model,we derive the Forward Euler Method and the fuzzy delayed non-standard finite difference(FDNSFD)method.Analytical studies of the FDNSFD scheme are performed for convergence,non-negativity,boundedness,and consistency analysis of the numerical projection to guarantee that the numerical model is an accurate discretization of the continuous dynamics of FMD transmission over time.In the following simulation study,we show that the FDNSFD method preserves the characteristics of the constant model and still works if relatively large time steps are employed;this is a bonus over the normal finite difference technique.The study shows how valuable it is to adopt fuzzy theory and time delays when simulating the transmission of the epidemic,especially for such diseases as FMD where uncertainty and migration have a defining role in transmission.This approach gives more sound and flexible grounds for analyzing and controlling the outbreak of FMD in various situations.
文摘This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel,is developed to address the inherent limitations of both SFSs and the traditional Delphi technique,particularly in uncertain,complex scenarios.In such contexts,the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations.This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers,encompassing weighted geometric and arithmetic operators alongside fully developed operators tailored for SFZs numbers.Subsequently,a case study and comparative analysis are conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies.Integrating the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant on expert input.Further,this combination serves as a comprehensive tool for decision-makers,enabling them to achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions.The case study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios,showcasing its ability to improve consensus-building processes and enhance decision outcomes.Additionally,the comparative analysis highlights the superiority of the integrated approach over traditional methodologies,underscoring its potential to revolutionize decision-making practices in uncertain environments.
文摘Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common underlying causes.Around 15%of diabetic patients are affected by diabetic foot ulcer in their lifetime.64 million people are affected by diabetics in India and 40000 amputations are done every year.Foot ulcers are evaluated and classified in a systematic and thorough manner to assist in determining the best course of therapy.This paper proposes a novel model which predicts the threat of diabetic foot ulcer using independent agents for various input values and a combination of fuzzy expert systems.The proposed model uses a classification system to distinguish between each fuzzy framework and its parameters.Based on the severity levels necessary prevention,treatment,and medication are recommended.Combining the results of all the fuzzy frameworks derived from its constituent parameters,a risk-specific medication is recommended.The work also has higher accuracy when compared to other related models.
基金supported by the project of the National Social Science Fundation(21BJL052,20BJY020,20BJL127,19BJY090)the 2018 Fujian Social Science Planning Project(FJ2018B067)The Planning Fund Project of Humanities and Social Sciences Research of the Ministry of Education in 2019(19YJA790102),The grant has been received by Aoqi Xu.
文摘In many problems,to analyze the process/metabolism behavior,a mod-el of the system is identified.The main gap is the weakness of current methods vs.noisy environments.The primary objective of this study is to present a more robust method against uncertainties.This paper proposes a new deep learning scheme for modeling and identification applications.The suggested approach is based on non-singleton type-3 fuzzy logic systems(NT3-FLSs)that can support measurement errors and high-level uncertainties.Besides the rule optimization,the antecedent parameters and the level of secondary memberships are also adjusted by the suggested square root cubature Kalmanfilter(SCKF).In the learn-ing algorithm,the presented NT3-FLSs are deeply learned,and their nonlinear structure is preserved.The designed scheme is applied for modeling carbon cap-ture and sequestration problem using real-world data sets.Through various ana-lyses and comparisons,the better efficiency of the proposed fuzzy modeling scheme is verified.The main advantages of the suggested approach include better resistance against uncertainties,deep learning,and good convergence.
基金Supported by the National Natural Science Foundation of China(61472136)the Best Youth of the Education Department of Hunan Province(16B023)
文摘This paper focuses on the stability analysis of nonlinear networked control system with integral quadratic constraints(IQC) performance, dynamic quantization, variable sampling intervals, and communication delays. By using input-delay and parallel distributed compensation(PDC) techniques, we establish the Takagi-Sugeno(T-S) fuzzy model for the system, in which the sampling period of the sampler and signal transmission delay are transformed to the refreshing interval of a zero-order holder(ZOH). By the appropriate Lyapunov-Krasovskii-based methods, a delay-dependent criterion is derived to ensure the asymptotic stability for the system with IQC performance via the H∞ state feedback control. The efficiency of the method is illustrated on a simulation exampler.
文摘Purpose-The purpose of this paper is to look at the problem of fault tolerant control(FTC)for discrete time nonlinear system described by Interval Type-2 Takagi–Sugeno(IT2 TS)fuzzy model subjected to stochastic noise and actuator faults.Design/methodology/approach–An IT2 fuzzy augmented state observer is first developed to estimate simultaneously the system states and the actuator faults since this estimation is required for the design of the FTC control law.Furthermore,based on the information of the states and the faults estimate,an IT2 fuzzy state feedback controller is conceived to compensate for the faults effect and to ensure a good tracking performance between the healthy system and the faulty one.Sufficient conditions for the existence of the IT2 fuzzy controller and the IT2 fuzzy observer are given in terms of linear matrix inequalities which can be solved using a two-step computing procedure.Findings–The paper opted for simulation results which are applied to the three-tank system.These results are presented to illustrate the effectiveness of the proposed FTC strategy.Originality/value–In this paper,the problem of active FTC design for noisy and faulty nonlinear system represented by IT2 TS fuzzy model is treated.The developed IT2 fuzzy fault tolerant controller is designed such that it can guarantee the stability of the closed-loop system.Moreover,the proposed controller allows to accommodate for faults,presents a satisfactory state tracking performance and outperforms the traditional type-1 fuzzy fault tolerant controller.
基金Project supported by the Natural Science Foundation of Yangzhou University of China (Grant No KK0513109).
文摘In this paper, an approach to the control of continuous-time chaotic systems is proposed using the Takagi-Sugeno (TS) fuzzy model and adaptive adjustment. Sufficient conditions are derived to guarantee chaos control from Lyapunov stability theory. The proposed approach offers a systematic design procedure for stabilizing a large class of chaotic systems in the literature about chaos research. The simulation results on Rossler's system verify the effectiveness of the proposed methods.
基金This work is supported by the NationalNatural Science Foundation of China(No.62076042)the Key Research and Development Project of Sichuan Province(Nos.2021YFSY0012,2020YFG0307,2021YFG0332)+3 种基金the Science and Technology Innovation Project of Sichuan(No.2020017)the Key Research and Development Project of Chengdu(No.2019-YF05-02028-GX)the Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643).
文摘In the era of big data,traditional regression models cannot deal with uncertain big data efficiently and accurately.In order to make up for this deficiency,this paper proposes a quantum fuzzy regression model,which uses fuzzy theory to describe the uncertainty in big data sets and uses quantum computing to exponentially improve the efficiency of data set preprocessing and parameter estimation.In this paper,data envelopment analysis(DEA)is used to calculate the degree of importance of each data point.Meanwhile,Harrow,Hassidim and Lloyd(HHL)algorithm and quantum swap circuits are used to improve the efficiency of high-dimensional data matrix calculation.The application of the quantum fuzzy regression model to smallscale financial data proves that its accuracy is greatly improved compared with the quantum regression model.Moreover,due to the introduction of quantum computing,the speed of dealing with high-dimensional data matrix has an exponential improvement compared with the fuzzy regression model.The quantum fuzzy regression model proposed in this paper combines the advantages of fuzzy theory and quantum computing which can efficiently calculate high-dimensional data matrix and complete parameter estimation using quantum computing while retaining the uncertainty in big data.Thus,it is a new model for efficient and accurate big data processing in uncertain environments.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups”(Project under Grant Number(RGP.2/116/43)).
文摘Amoebiasis is a parasitic intestinal infection caused by the highly pathogenic amoeba Entamoeba histolytica.It is spread through person-toperson contact or by eating or drinking food or water contaminated with feces.Its transmission rate depends on the number of cysts present in the environment.The traditional models assumed a homogeneous and contradictory transmission with reality.The heterogeneity of its transmission rate is a significant factor when modeling disease dynamics.The heterogeneity of disease transmission can be described mathematically by introducing fuzzy theory.In this context,a fuzzy SEIR Amoebiasis disease model is considered in this study.The equilibrium analysis and reproductive number are studied with fuzziness.Two numerical schemes forward Euler method and a nonstandard finite difference(NSFD)approach,are developed for the learned model,and the results of numerical simulations are presented.The numerical and simulation results reveal that the proposed NSFD method provides an adequate representation of the dynamics of the disease despite the uncertainty and heterogeneity.Moreover,the obtained method generates plausible predictions that regulators can use to support decision-making to design and develop control strategies.
基金funded by the Ministry of Education in Saudi Arabia of funder Grant Number ISP22-6 and the APC was funded by the Ministry of Education in Saudi Arabia.
文摘In this article,a Susceptible-Exposed-Infectious-Recovered(SEIR)epidemic model is considered.The equilibrium analysis and reproduction number are studied.The conventional models have made assumptions of homogeneity in disease transmission that contradict the actual reality.However,it is crucial to consider the heterogeneity of the transmission rate when modeling disease dynamics.Describing the heterogeneity of disease transmission mathematically can be achieved by incorporating fuzzy theory.A numerical scheme nonstandard,finite difference(NSFD)approach is developed for the studied model and the results of numerical simulations are presented.Simulations of the constructed scheme are presented.The positivity,convergence and consistency of the developed technique are investigated using mathematical induction,Jacobean matrix and Taylor series expansions respectively.The suggested scheme preserves all these essential characteristics of the disease dynamical models.The numerical and simulation results reveal that the proposed NSFD method provides an adequate representation of the dynamics of the disease.Moreover,the obtained method generates plausible predictions that can be used by regulators to support the decision-making process to design and develop control strategies.Effects of the natural immunity on the infected class are studied which reveals that an increase in natural immunity can decrease the infection and vice versa.
文摘Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61873268,62025307 and U1913209)the Beijing Natural Science Foundation(Grant No.JQ19020).
文摘Pneumatic artificial muscles(PAMs)usually exhibit strong hysteresis nonlinearity and time-varying features that bring PAMs modeling and control difficulties.To characterize the hysteresis relation between PAMs’displacement and fluid pressure,a long short term memory(LSTM)neural network model and an adaptive Takagi-Sugeno(T-S)fuzzy model are proposed.Experiments show that both models perform well under the load free conditions,and the adaptive T-S Fuzzy model can furtherly adapt to the change of load with the online adaptation ability.With the concise expression and satisfactory performance of the adaptive T-S Fuzzy model,a model predictive controller is designed and tested.Experiments show that the model predictive controller has a good performance on tracking the given references.
基金Item Sponsored by National Natural Science Foundation of China(51174253)
文摘Grate-kiln-cooler has become a major process of producing iron ore pellets in China. Due to the diversity of the raw materials used and the multi-device multi-variable characteristics,this process still encounters with control problem. An attempt was proposed to deal with this issue. The three-device-integrated feature of the process was firstly analyzed to obtain control strategy,and then an intelligent control system using a combination of expert system approach and Takagi-Sugeno( T-S) fuzzy model was developed. Expert system approach was used to diagnose and remedy the abnormal conditions,while T-S fuzzy model was used to stabilize the thermal state. In the construction of T-S fuzzy rules,antecedents were identified by fuzzy c-mean clustering algorithm incorporated with subtractive clustering algorithm,and consequent parameters were identified by recursive least square algorithm. The control system was applied in a Chinese pelletizing plant and the application results demonstrated its effectiveness of stabilizing the thermal states within three devices.
文摘The reasonable determination of ecological flow is of great significance for the efforts to promote the transformation of water ecological environmental protection from pollution management to synergistic management of water resources,water ecology and water environment,and to promote them in an integrated manner.This paper analyzed and calculated the ecological flow process of the Bangsha River diversion power station using the minimum ecological flow method,the annual spreading method,the improved annual spreading method,the NGPRP method,and the month-by-month frequency method,and evaluated the reasonableness of the process and results of the ecological flow calculations by using the fuzzy evaluation model established.The study showed that the minimum ecological flow rate determined by improving the coupling of the spreading method and the NGPRP method was the best,and the suitable ecological flow rate determined by the month-by-month frequency method was the best;the minimum ecological flow rate of the Bangsha River diversion power station was at 0.43-4.21 m 3/s,and the suitable ecological flow rate was at 0.56-4.94 m 3/s,and the trend of its change showed the trend of first increasing and then decreasing,and the trend of change from January to July showed the trend of first increasing and then decreasing.Its trend of change showed an increasing and then decreasing trend,from January to July showed a gradually increasing trend,from August to December showed a gradually decreasing trend.It aimed to provide a theoretical basis for the reasonable determination of the ecological flow of the river hydropower station.