This paper deals with the problem of stabilization design for a class of continuous-time Takagi-Sugeno(T-S)fuzzy systems.New stabilization conditions are derived based on a relaxed approach in which both fuzzy Lyapu...This paper deals with the problem of stabilization design for a class of continuous-time Takagi-Sugeno(T-S)fuzzy systems.New stabilization conditions are derived based on a relaxed approach in which both fuzzy Lyapunov functions and staircase membership functions are used.Through the staircase membership functions approximating the continuous membership functions of the given fuzzy model,the information of the membership functions can be brought into the stabilization design of the fuzzy systems,thereby significantly reducing the conservativeness in the existing stabilization conditions of the T-S fuzzy systems.Unlike some previous fuzzy Lyapunov function approaches reported in the literature,the proposed stabilization conditions do not depend on the time-derivative of the membership functions that may be the main source of conservatism when considering fuzzy Lyapunov functions analysis.Moreover,conditions for the solvability of the controller design are written in the form of linear matrix inequalities,but not bilinear matrix inequalities,which are easier to be solved by convex optimization techniques.A simulation example is given to demonstrate the validity of the proposed approach.展开更多
By the best approximation theory, it is first proved that the SISO (single-input single-output) linear Takagi-Sugeno (TS) fuzzy systems can approximate an arbitrary polynomial which, according to Weierstrass appro...By the best approximation theory, it is first proved that the SISO (single-input single-output) linear Takagi-Sugeno (TS) fuzzy systems can approximate an arbitrary polynomial which, according to Weierstrass approximation theorem, can uniformly approximate any continuous functions on the compact domain. Then new sufficient conditions for general linear SISO TS fuzzy systems as universal approximators are obtained. Formulae are derived to calculate the number of input fuzzy sets to satisfy the given approximation accuracy. Then the presented result is compared with the existing literature's results. The comparison shows that the presented result needs less input fuzzy sets, which can simplify the design of the fuzzy system, and examples are given to show its effectiveness.展开更多
We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ...We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attraction. Based on the project lemma and classical sector conditions, the conditions for the existence of solutions to this problem are obtained and expressed in terms of a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.展开更多
This paper aims to design a controller to robustly stabilize uncertain Takagi-Sugeno fuzzy systems with time- varying input delay.Based on Lyapunov-Krasovskii functional approach,the sufficient conditions for robust s...This paper aims to design a controller to robustly stabilize uncertain Takagi-Sugeno fuzzy systems with time- varying input delay.Based on Lyapunov-Krasovskii functional approach,the sufficient conditions for robust stabilization of such systems are given in the form of linear matrix inequali- ties.The controller design does not have to require that the time-derivative of time-varying input delay be smaller than one. A numeric example is given to show that the proposed results are effective and less conservative.展开更多
This paper deals with the exponential stability of impulsive Takagi-Sugeno fuzzy systems with delay. Impulsive control and delayed fuzzy control are applied to the system, and the criterion on exponential stability ex...This paper deals with the exponential stability of impulsive Takagi-Sugeno fuzzy systems with delay. Impulsive control and delayed fuzzy control are applied to the system, and the criterion on exponential stability expressed in terms of linear matrix inequalities (LMIs) is presented.展开更多
This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear...This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear Matrix Inequality;hence the stability bound of upper bound delay time can be easily estimated. Finally, numeric simulations are given to validate the developed approach.展开更多
This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemi...This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
C.L. Chang’s introduction of fuzzy topology in 1981 opened up new avenues for parallel theories in topology. However, Chang’s work appears to focus more on the topology of fuzzy sets rather than fuzzy topology itsel...C.L. Chang’s introduction of fuzzy topology in 1981 opened up new avenues for parallel theories in topology. However, Chang’s work appears to focus more on the topology of fuzzy sets rather than fuzzy topology itself. In 1975, Michálek presented a functional definition of ordinary topology and later developed fuzzy topology as a distinct extension of this idea, setting it apart from Chang’s approach. While there has been significant research on Chang’s fuzzy topology, Michálek’s version has not received as much attention. This paper introduces the concept of fuzzy regularly closed filters, or FRCM filters, within Michálek’s fuzzy topological space and explores some properties of FRCM ultrafilters.展开更多
The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper inves...The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper investigates the potential applications of intuitionistic fuzzy sets(IFS)with rough sets in the context of sparse data.When it comes to capture uncertain information emanating fromboth upper and lower approximations,these intuitionistic fuzzy rough numbers(IFRNs)are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets,respectively.We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their underlying properties.We present numerous impartial laws that incorporate the idea of proportionate dispersion in order to ensure that the membership and non-membership activities of IFRNs are treated equally within these principles.These operations lead to the development of the intuitionistic fuzzy rough weighted fairly aggregation operator(IFRWFA)and intuitionistic fuzzy rough ordered weighted fairly aggregation operator(IFRFOWA).These operators successfully adjust to membership and non-membership categories with fairness and subtlety.We highlight the unique qualities of these suggested aggregation operators and investigate their use in the multiattribute decision-making field.We use the intuitionistic fuzzy rough environment’s architecture to create a novel strategy in situation involving several decision-makers and non-weighted data.Additionally,we developed a novel technique by combining the IFSs with quaternion numbers.We establish a unique connection between alternatives and qualities by using intuitionistic fuzzy quaternion numbers(IFQNs).With the help of this framework,we can simulate uncertainty in real-world situations and address a number of decision-making problems.Using the examples we have released,we offer a sophisticated and systematically constructed illustrative scenario that is intricately woven with the complexity ofmedical evaluation in order to thoroughly assess the relevance and efficacy of the suggested methodology.展开更多
In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some ...In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.展开更多
In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has signifi...In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
Let G be a locally compact Lie group and its Lie algebra. We consider a fuzzy analogue of G, denoted by called a fuzzy Lie group. Spherical functions on are constructed and a version of the existence result of the Hel...Let G be a locally compact Lie group and its Lie algebra. We consider a fuzzy analogue of G, denoted by called a fuzzy Lie group. Spherical functions on are constructed and a version of the existence result of the Helgason-spherical function on G is then established on .展开更多
Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly tr...Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly treated to reduce environmental pollution.This study evaluates a few available Food Waste Treatment(FWT)technologies,such as anaerobic digestion,composting,landfill,and incineration,which are widely used.A Bipolar Picture Fuzzy Set(BPFS)is proposed to deal with the ambiguity and uncertainty that arise when converting a real-world problem to a mathematical model.A novel Criteria Importance Through Intercriteria Correlation-Stable Preference Ordering Towards Ideal Solution(CRITIC-SPOTIS)approach is developed to objectively analyze FWT selection based on thirteen criteria covering the industry’s technical,environmental,and entrepreneurial aspects.The CRITIC method is used for the objective analysis of the importance of each criterion in FWT selection.The SPOTIS method is adopted to rank the alternative hassle-free,following the criteria.The proposed model offers a rank reversal-free model,i.e.,the rank of the alternatives remains unaffected even after the addition or removal of an alternative.In addition,comparative and sensitivity analyses are performed to ensure the reliability and robustness of the proposed model and to validate the proposed result.展开更多
基金The National Natural Science Foundation of China(No.60764001,60835001,60875035,61004032)the Postdoctoral Research Fund of Southeast Universitythe Natural Science Foundation of Jiangsu Province(No.BK2008294)
文摘This paper deals with the problem of stabilization design for a class of continuous-time Takagi-Sugeno(T-S)fuzzy systems.New stabilization conditions are derived based on a relaxed approach in which both fuzzy Lyapunov functions and staircase membership functions are used.Through the staircase membership functions approximating the continuous membership functions of the given fuzzy model,the information of the membership functions can be brought into the stabilization design of the fuzzy systems,thereby significantly reducing the conservativeness in the existing stabilization conditions of the T-S fuzzy systems.Unlike some previous fuzzy Lyapunov function approaches reported in the literature,the proposed stabilization conditions do not depend on the time-derivative of the membership functions that may be the main source of conservatism when considering fuzzy Lyapunov functions analysis.Moreover,conditions for the solvability of the controller design are written in the form of linear matrix inequalities,but not bilinear matrix inequalities,which are easier to be solved by convex optimization techniques.A simulation example is given to demonstrate the validity of the proposed approach.
文摘By the best approximation theory, it is first proved that the SISO (single-input single-output) linear Takagi-Sugeno (TS) fuzzy systems can approximate an arbitrary polynomial which, according to Weierstrass approximation theorem, can uniformly approximate any continuous functions on the compact domain. Then new sufficient conditions for general linear SISO TS fuzzy systems as universal approximators are obtained. Formulae are derived to calculate the number of input fuzzy sets to satisfy the given approximation accuracy. Then the presented result is compared with the existing literature's results. The comparison shows that the presented result needs less input fuzzy sets, which can simplify the design of the fuzzy system, and examples are given to show its effectiveness.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61203047 and 60904023)
文摘We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attraction. Based on the project lemma and classical sector conditions, the conditions for the existence of solutions to this problem are obtained and expressed in terms of a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach.
基金Supported by National Basic Research Program of China(973 Program)(2002CB312200)National Natural Science Foundation of China(60474045)
文摘This paper aims to design a controller to robustly stabilize uncertain Takagi-Sugeno fuzzy systems with time- varying input delay.Based on Lyapunov-Krasovskii functional approach,the sufficient conditions for robust stabilization of such systems are given in the form of linear matrix inequali- ties.The controller design does not have to require that the time-derivative of time-varying input delay be smaller than one. A numeric example is given to show that the proposed results are effective and less conservative.
文摘This paper deals with the exponential stability of impulsive Takagi-Sugeno fuzzy systems with delay. Impulsive control and delayed fuzzy control are applied to the system, and the criterion on exponential stability expressed in terms of linear matrix inequalities (LMIs) is presented.
文摘This paper deals with the stability of Takagi-Sugeno fuzzy models with time delay. Using fuzzy weighting- dependent Lyapunov-Krasovskii functionals, new sufficient stability criteria are established in terms of Linear Matrix Inequality;hence the stability bound of upper bound delay time can be easily estimated. Finally, numeric simulations are given to validate the developed approach.
基金the support of Prince Sultan University for paying the article processing charges(APC)of this publication.
文摘This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
文摘C.L. Chang’s introduction of fuzzy topology in 1981 opened up new avenues for parallel theories in topology. However, Chang’s work appears to focus more on the topology of fuzzy sets rather than fuzzy topology itself. In 1975, Michálek presented a functional definition of ordinary topology and later developed fuzzy topology as a distinct extension of this idea, setting it apart from Chang’s approach. While there has been significant research on Chang’s fuzzy topology, Michálek’s version has not received as much attention. This paper introduces the concept of fuzzy regularly closed filters, or FRCM filters, within Michálek’s fuzzy topological space and explores some properties of FRCM ultrafilters.
基金funded by King Khalid University through a large group research project under Grant Number R.G.P.2/449/44.
文摘The main goal of informal computing is to overcome the limitations of hypersensitivity to defects and uncertainty while maintaining a balance between high accuracy,accessibility,and cost-effectiveness.This paper investigates the potential applications of intuitionistic fuzzy sets(IFS)with rough sets in the context of sparse data.When it comes to capture uncertain information emanating fromboth upper and lower approximations,these intuitionistic fuzzy rough numbers(IFRNs)are superior to intuitionistic fuzzy sets and pythagorean fuzzy sets,respectively.We use rough sets in conjunction with IFSs to develop several fairly aggregation operators and analyze their underlying properties.We present numerous impartial laws that incorporate the idea of proportionate dispersion in order to ensure that the membership and non-membership activities of IFRNs are treated equally within these principles.These operations lead to the development of the intuitionistic fuzzy rough weighted fairly aggregation operator(IFRWFA)and intuitionistic fuzzy rough ordered weighted fairly aggregation operator(IFRFOWA).These operators successfully adjust to membership and non-membership categories with fairness and subtlety.We highlight the unique qualities of these suggested aggregation operators and investigate their use in the multiattribute decision-making field.We use the intuitionistic fuzzy rough environment’s architecture to create a novel strategy in situation involving several decision-makers and non-weighted data.Additionally,we developed a novel technique by combining the IFSs with quaternion numbers.We establish a unique connection between alternatives and qualities by using intuitionistic fuzzy quaternion numbers(IFQNs).With the help of this framework,we can simulate uncertainty in real-world situations and address a number of decision-making problems.Using the examples we have released,we offer a sophisticated and systematically constructed illustrative scenario that is intricately woven with the complexity ofmedical evaluation in order to thoroughly assess the relevance and efficacy of the suggested methodology.
基金Supported in part by the National Social Science Foundation of China(19BTJ020)。
文摘In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.
文摘In this study, we are first examining well-known approach to improve fuzzy reasoning model (FRM) by use of the genetic-based learning mechanism [1]. Later we propose our alternative way to build FRM, which has significant precision advantages and does not require any adjustment/learning. We put together neuro-fuzzy system (NFS) to connect the set of exemplar input feature vectors (FV) with associated output label (target), both represented by their membership functions (MF). Next unknown FV would be classified by getting upper value of current output MF. After that the fuzzy truths for all MF upper values are maximized and the label of the winner is considered as the class of the input FV. We use the knowledge in the exemplar-label pairs directly with no training. It sets up automatically and then classifies all input FV from the same population as the exemplar FVs. We show that our approach statistically is almost twice as accurate, as well-known genetic-based learning mechanism FRM.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
文摘Let G be a locally compact Lie group and its Lie algebra. We consider a fuzzy analogue of G, denoted by called a fuzzy Lie group. Spherical functions on are constructed and a version of the existence result of the Helgason-spherical function on G is then established on .
文摘Food Waste(FW)is a pressing environmental concern that affects every country globally.About one-third of the food that is produced ends up as waste,contributing to the carbon footprint.Hence,the FW must be properly treated to reduce environmental pollution.This study evaluates a few available Food Waste Treatment(FWT)technologies,such as anaerobic digestion,composting,landfill,and incineration,which are widely used.A Bipolar Picture Fuzzy Set(BPFS)is proposed to deal with the ambiguity and uncertainty that arise when converting a real-world problem to a mathematical model.A novel Criteria Importance Through Intercriteria Correlation-Stable Preference Ordering Towards Ideal Solution(CRITIC-SPOTIS)approach is developed to objectively analyze FWT selection based on thirteen criteria covering the industry’s technical,environmental,and entrepreneurial aspects.The CRITIC method is used for the objective analysis of the importance of each criterion in FWT selection.The SPOTIS method is adopted to rank the alternative hassle-free,following the criteria.The proposed model offers a rank reversal-free model,i.e.,the rank of the alternatives remains unaffected even after the addition or removal of an alternative.In addition,comparative and sensitivity analyses are performed to ensure the reliability and robustness of the proposed model and to validate the proposed result.