语音信号的稀疏表示是语音压缩与降噪等语音处理的关键技术之一.在匹配追踪(matching pursuit,MP)、正交匹配追踪(orthogonal matching pursuit,OMP)等算法的基础上,提出了一种基于Takenaka-Malmquist系的贪婪权值算法(a greedy weight ...语音信号的稀疏表示是语音压缩与降噪等语音处理的关键技术之一.在匹配追踪(matching pursuit,MP)、正交匹配追踪(orthogonal matching pursuit,OMP)等算法的基础上,提出了一种基于Takenaka-Malmquist系的贪婪权值算法(a greedy weight algorithm based on the Takenaka-Malmquist system,TMGW).采用TMGW对语音信号进行重构时只需要较少的分解项数,从而达到语音压缩的目的.同时,根据稀疏分解后信号与噪声在时频面上能量分布不同的特点,该算法可实现对含噪语音的降噪.实验结果表明,TMGW比基于自适应Gabor子字典的匹配追踪算法(matching pursuit algorithm based on the adaptive Gabor sub-dictionary,GMP)更适用于语音信号的稀疏表示.展开更多
This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)i...This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)is the n-th term of the Gram-Schmidt orthogonalization of the Szego kernels k_(a1),k_(an),or their multiple forms.Three schemes are presented.The first two schemes each directly obtain all the function values f(z).In the first one we use Nevanlinna’s inner and outer function factorization which merely requires the 1-intensity measurements equivalent to know the modulus|f(z)|.In the second scheme we do not use deep complex analysis,but require some 2-and 3-intensity measurements.The third scheme,as an application of AFD,gives sparse representation of f(z)converging quickly in the energy sense,depending on consecutively selected maximal n-intensity measurements|<f,E_(a1…an)>|.展开更多
Any analytic signal fa(e^(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition,...Any analytic signal fa(e^(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition, Kumarasan and Rao(1999), implementing the idea of the Szeg?o limit theorem(see below),proposed an algorithm to obtain approximations of the minimum-phase signal of a polynomial analytic signal fa(e^(it)) = e^(iN0t)M∑k=0a_k^(eikt),(0.1)where a_0≠ 0, a_M≠ 0. Their method involves minimizing the energy E(f_a, h_1, h_2,..., h_H) =1/(2π)∫_0^(2π)|1+H∑k=1h_k^(eikt)|~2|fa(e^(it))|~2dt(0.2) with the undetermined complex numbers hk's by the least mean square error method. In the limiting procedure H →∞, one obtains approximate solutions of the minimum-phase signal. What is achieved in the present paper is two-fold. On one hand, we rigorously prove that, if fa(e^(it)) is a polynomial analytic signal as given in(0.1),then for any integer H≥M, and with |fa(e^(it))|~2 in the integrand part of(0.2) being replaced with 1/|fa(e^(it))|~2,the exact solution of the minimum-phase signal of fa(e^(it)) can be extracted out. On the other hand, we show that the Fourier system e^(ikt) used in the above process may be replaced with the Takenaka-Malmquist(TM) system, r_k(e^(it)) :=((1-|α_k|~2e^(it))/(1-α_ke^(it))^(1/2)∏_(j=1)^(k-1)(e^(it)-α_j/(1-α_je^(it))^(1/2), k = 1, 2,..., r_0(e^(it)) = 1, i.e., the least mean square error method based on the TM system can also be used to extract out approximate solutions of minimum-phase signals for any functions f_a in the Hardy space. The advantage of the TM system method is that the parameters α_1,..., α_n,...determining the system can be adaptively selected in order to increase computational efficiency. In particular,adopting the n-best rational(Blaschke form) approximation selection for the n-tuple {α_1,..., α_n}, n≥N, where N is the degree of the given rational analytic signal, the minimum-phase part of a rational analytic signal can be accurately and efficiently extracted out.展开更多
Mobius transforms,Blaschke products and starlike functions as typical conformal mappings of one complex variable give rise to nonlinear phases with non-negative phase derivatives with the latter being de ned by instan...Mobius transforms,Blaschke products and starlike functions as typical conformal mappings of one complex variable give rise to nonlinear phases with non-negative phase derivatives with the latter being de ned by instantaneous frequencies of signals they represent.The positive analytic phase derivative has been a widely interested subject among signal analysts(see Gabor(1946)).Research results of the positive analytic frequency and applications appears in the literature since the middle of the 20th century.Of the positive frequency study a directly related topic is positive frequency decomposition of signals.The mainly focused methods of such decompositions include the maximal selection method and the Blaschke product unwinding method,and joint use of the mentioned methods.In this paper,we propose a class of iterative greedy algorithms based on the Blaschke product and adaptive Fourier decomposition.It generalizes the Blaschke product unwinding method by subtracting constants other than the averages of the remaining functions,aiming at larger winding numbers,and subtracting n-Blaschke forms of the remaining functions,aiming at generating larger numbers of zero-crossings,to fast reduce energy of the remaining terms.Furthermore,we give a comprehensive and rigorous proof of the converging rate in terms of the zeros of the remainders.Finite Blaschke product methods are proposed to avoid the in nite phase derivative dilemma,and to avoid the computational diculties.展开更多
文摘语音信号的稀疏表示是语音压缩与降噪等语音处理的关键技术之一.在匹配追踪(matching pursuit,MP)、正交匹配追踪(orthogonal matching pursuit,OMP)等算法的基础上,提出了一种基于Takenaka-Malmquist系的贪婪权值算法(a greedy weight algorithm based on the Takenaka-Malmquist system,TMGW).采用TMGW对语音信号进行重构时只需要较少的分解项数,从而达到语音压缩的目的.同时,根据稀疏分解后信号与噪声在时频面上能量分布不同的特点,该算法可实现对含噪语音的降噪.实验结果表明,TMGW比基于自适应Gabor子字典的匹配追踪算法(matching pursuit algorithm based on the adaptive Gabor sub-dictionary,GMP)更适用于语音信号的稀疏表示.
基金The Science and Technology Development Fund,Macao SAR(File no.0123/2018/A3)supported by the Natural Science Foundation of China(61961003,61561006,11501132)+2 种基金Natural Science Foundation of Guangxi(2016GXNSFAA380049)the talent project of the Education Department of the Guangxi Government for one thousand Young-Middle-Aged backbone teachersthe Natural Science Foundation of China(12071035)。
文摘This paper concerns the reconstruction of a function f in the Hardy space of the unit disc D by using a sample value f(a)and certain n-intensity measurements|<f,E_(a1…an)>|,where a_(1)…a_(n)∈D,and E_(a1…an)is the n-th term of the Gram-Schmidt orthogonalization of the Szego kernels k_(a1),k_(an),or their multiple forms.Three schemes are presented.The first two schemes each directly obtain all the function values f(z).In the first one we use Nevanlinna’s inner and outer function factorization which merely requires the 1-intensity measurements equivalent to know the modulus|f(z)|.In the second scheme we do not use deep complex analysis,but require some 2-and 3-intensity measurements.The third scheme,as an application of AFD,gives sparse representation of f(z)converging quickly in the energy sense,depending on consecutively selected maximal n-intensity measurements|<f,E_(a1…an)>|.
基金supported by Cultivation Program for Oustanding Young Teachers of Guangdong Province (Grant No. Yq2014060)Macao Science Technology Fund (Grant No. FDCT/099/ 2014/A2)
文摘Any analytic signal fa(e^(it)) can be written as a product of its minimum-phase signal part(the outer function part) and its all-phase signal part(the inner function part). Due to the importance of such decomposition, Kumarasan and Rao(1999), implementing the idea of the Szeg?o limit theorem(see below),proposed an algorithm to obtain approximations of the minimum-phase signal of a polynomial analytic signal fa(e^(it)) = e^(iN0t)M∑k=0a_k^(eikt),(0.1)where a_0≠ 0, a_M≠ 0. Their method involves minimizing the energy E(f_a, h_1, h_2,..., h_H) =1/(2π)∫_0^(2π)|1+H∑k=1h_k^(eikt)|~2|fa(e^(it))|~2dt(0.2) with the undetermined complex numbers hk's by the least mean square error method. In the limiting procedure H →∞, one obtains approximate solutions of the minimum-phase signal. What is achieved in the present paper is two-fold. On one hand, we rigorously prove that, if fa(e^(it)) is a polynomial analytic signal as given in(0.1),then for any integer H≥M, and with |fa(e^(it))|~2 in the integrand part of(0.2) being replaced with 1/|fa(e^(it))|~2,the exact solution of the minimum-phase signal of fa(e^(it)) can be extracted out. On the other hand, we show that the Fourier system e^(ikt) used in the above process may be replaced with the Takenaka-Malmquist(TM) system, r_k(e^(it)) :=((1-|α_k|~2e^(it))/(1-α_ke^(it))^(1/2)∏_(j=1)^(k-1)(e^(it)-α_j/(1-α_je^(it))^(1/2), k = 1, 2,..., r_0(e^(it)) = 1, i.e., the least mean square error method based on the TM system can also be used to extract out approximate solutions of minimum-phase signals for any functions f_a in the Hardy space. The advantage of the TM system method is that the parameters α_1,..., α_n,...determining the system can be adaptively selected in order to increase computational efficiency. In particular,adopting the n-best rational(Blaschke form) approximation selection for the n-tuple {α_1,..., α_n}, n≥N, where N is the degree of the given rational analytic signal, the minimum-phase part of a rational analytic signal can be accurately and efficiently extracted out.
基金supported by National Natural Science Foundation of China(Grant Nos.61471132 and 11671363)the Science and Technology Development Fund,Macao Special Administration Region(Grant No.0123/2018/A3).
文摘Mobius transforms,Blaschke products and starlike functions as typical conformal mappings of one complex variable give rise to nonlinear phases with non-negative phase derivatives with the latter being de ned by instantaneous frequencies of signals they represent.The positive analytic phase derivative has been a widely interested subject among signal analysts(see Gabor(1946)).Research results of the positive analytic frequency and applications appears in the literature since the middle of the 20th century.Of the positive frequency study a directly related topic is positive frequency decomposition of signals.The mainly focused methods of such decompositions include the maximal selection method and the Blaschke product unwinding method,and joint use of the mentioned methods.In this paper,we propose a class of iterative greedy algorithms based on the Blaschke product and adaptive Fourier decomposition.It generalizes the Blaschke product unwinding method by subtracting constants other than the averages of the remaining functions,aiming at larger winding numbers,and subtracting n-Blaschke forms of the remaining functions,aiming at generating larger numbers of zero-crossings,to fast reduce energy of the remaining terms.Furthermore,we give a comprehensive and rigorous proof of the converging rate in terms of the zeros of the remainders.Finite Blaschke product methods are proposed to avoid the in nite phase derivative dilemma,and to avoid the computational diculties.