The paper studies the behavior of reinforced concrete raft foundations for multi-story buildings. It also develops a reliability assessment tool for multi- story building raft foundations subjected to earthquake loadi...The paper studies the behavior of reinforced concrete raft foundations for multi-story buildings. It also develops a reliability assessment tool for multi- story building raft foundations subjected to earthquake loading. Several multi-story buildings with various configurations, heights, and soil profiles, were subjected to several ACI code combinations of gravity and earthquake loads from different seismic zones. The reliability of the raft foundations of these buildings was assessed using the reliability index approach based on their resistance to the applied loads. Also, the responses of the multi-story buildings under these loading combinations were studied and analyzed in order to draw recommendations and guidelines for the preliminary design of structurally efficient and reliable raft foundations in earthquake zones.展开更多
Location of the heavily loaded building on the ground of the small load capacity requires application of the appropriate foundation structure. The required foundation system is most often deep, it is expensive and its...Location of the heavily loaded building on the ground of the small load capacity requires application of the appropriate foundation structure. The required foundation system is most often deep, it is expensive and its cost increases significantly when the building is located in earthquake area or in mining damage sector. The proposed structural system of the combined foundation makes possible to design and to construct a very stable and relative inexpensive foundation structure, which can obtain an extremely large horizontal surface and which can be placed not deeply beneath the terrain level. It can be a very solid support structure for a tall building placed on very weak subsoil and at the same time located in seismic area. This system can be applied not only for new buildings but it can be used for the existing buildings and moreover for straighten of the inclined objects. Due to special arrangement of component parts the combined foundation possesses inherent features of a vibration damper, what is highly desirable if buildings have to be located in earthquake areas. When the aboveground storeys structure has some similar patterns with structural form of the combined foundation then the structural system of the whole building obtains coherent structural characteristics and it is called the combined structural system of the tall building. Suitable application of this system makes possible to design high-rise buildings having interesting and unique architectonic forms, what is presented on a selected example.展开更多
文摘The paper studies the behavior of reinforced concrete raft foundations for multi-story buildings. It also develops a reliability assessment tool for multi- story building raft foundations subjected to earthquake loading. Several multi-story buildings with various configurations, heights, and soil profiles, were subjected to several ACI code combinations of gravity and earthquake loads from different seismic zones. The reliability of the raft foundations of these buildings was assessed using the reliability index approach based on their resistance to the applied loads. Also, the responses of the multi-story buildings under these loading combinations were studied and analyzed in order to draw recommendations and guidelines for the preliminary design of structurally efficient and reliable raft foundations in earthquake zones.
文摘Location of the heavily loaded building on the ground of the small load capacity requires application of the appropriate foundation structure. The required foundation system is most often deep, it is expensive and its cost increases significantly when the building is located in earthquake area or in mining damage sector. The proposed structural system of the combined foundation makes possible to design and to construct a very stable and relative inexpensive foundation structure, which can obtain an extremely large horizontal surface and which can be placed not deeply beneath the terrain level. It can be a very solid support structure for a tall building placed on very weak subsoil and at the same time located in seismic area. This system can be applied not only for new buildings but it can be used for the existing buildings and moreover for straighten of the inclined objects. Due to special arrangement of component parts the combined foundation possesses inherent features of a vibration damper, what is highly desirable if buildings have to be located in earthquake areas. When the aboveground storeys structure has some similar patterns with structural form of the combined foundation then the structural system of the whole building obtains coherent structural characteristics and it is called the combined structural system of the tall building. Suitable application of this system makes possible to design high-rise buildings having interesting and unique architectonic forms, what is presented on a selected example.