To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were ch...To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were chosen as the research object.Groundwater with four salinity levels was created,and three groundwater level(GL)were applied for each salinity treatment to measure the root growth and architecture indexes.In the fresh water and brackish water treatments,the topological index(TI)of the T.chinensis roots was close to 0.5,and the root architecture was close to a dichotomous branching pattern.In the saline water and saltwater treatments,the TI of the T.chinensis roots was large and close to 1.0,and the root architecture was close to a herringbone-like branching pattern.Under different GLs and salinities,the total root length was significantly greater than the internal link length,the external link length was greater than the internal link length,and the root system showed an outward expansion strategy.The treatment with fresh water and a GL of 1.5 m was the most suitable for T.chinensis root growth,while the root growth of T.chinensis was the worst in the treatment with saline water and a GL of 0.3 m.T.chinensis can adapt to the changes in soil water and salt by regulating the growth and morphological characteristics of the root system.T.chinensis can adapt to high-salt environments by reducing its root branching and to water deficiencies by expanding the distribution and absorption area of the root system.展开更多
The complex interactions in desert ecosystems between functional types and environmental conditions could be reflected by plant water use patterns. However, the mechanisms underlying the water use patterns as well as ...The complex interactions in desert ecosystems between functional types and environmental conditions could be reflected by plant water use patterns. However, the mechanisms underlying the water use patterns as well as the water sources of Tamarix laxa in the mega-dunes of the Badain Jaran Desert, China, remain unclear. This study investigated the water sources and water use patterns of T. laxa using the stable oxygen isotope method. The δ18O values of xylem water, soil water in different layers(0–200 cm), rainwater, snow water, lake water, atmospheric water vapor, condensate water, and groundwater were measured. The sources of water used by T. laxa were determined using the IsoSource model. The results indicate that T. laxa mainly relies on soil water. At the beginning of the growing season(in May), the species is primarily dependent on water from the middle soil layer(60–120 cm) and deep soil layer(120–200 cm). However, it mainly absorbs water from the shallow soil layer(0–60 cm) as the rainy season commences. In September, water use of T. laxa reverts to the deep soil layer(120–200 cm). The water use patterns of T. laxa are closely linked with heavy precipitation events and soil water content. These findings reveal the drought resistance mechanisms of T. laxa and are of significance for screening species for ecological restoration.展开更多
Tamarix taklamakanensis,a dominant species in the Taklimakan Desert of China,plays a crucial role in stabilizing sand dunes and maintaining regional ecosystem stability.This study aimed to determine the water use stra...Tamarix taklamakanensis,a dominant species in the Taklimakan Desert of China,plays a crucial role in stabilizing sand dunes and maintaining regional ecosystem stability.This study aimed to determine the water use strategies of T.taklamakanensis in the Taklimakan Desert under a falling groundwater depth.Four typical T.taklamakanensis nabkha habitats(sandy desert of Tazhong site,saline desert-alluvial plain of Qiemo site,desert-oasis ecotone of Qira site and desert-oasis ecotone of Aral site)were selected with different climate,soil,groundwater and plant cover conditions.Stable isotope values of hydrogen and oxygen were measured for plant xylem water,soil water(soil depths within 0–500 cm),snowmelt water and groundwater in the different habitats.Four potential water sources for T.taklamakanensis,defined as shallow,middle and deep soil water,as well as groundwater,were investigated using a Bayesian isotope mixing model.It was found that groundwater in the Taklimakan Desert was not completely recharged by precipitation,but through the river runoff from snowmelt water in the nearby mountain ranges.The surface soil water content was quickly depleted by strong evaporation,groundwater depth was relatively shallow and the height of T.taklamakanensis nabkha was relatively low,thus T.taklamakanensis primarily utilized the middle(23%±1%)and deep(31%±5%)soil water and groundwater(36%±2%)within the sandy desert habitat.T.taklamakanensis mainly used the deep soil water(55%±4%)and a small amount of groundwater(25%±2%)within the saline desert-alluvial plain habitat,where the soil water content was relatively high and the groundwater depth was shallow.In contrast,within the desert-oasis ecotone in the Qira and Aral sites,T.taklamakanensis primarily utilized the deep soil water(35%±1%and 38%±2%,respectively)and may also use groundwater because the height of T.taklamakanensis nabkha was relatively high in these habitats and the soil water content was relatively low,which is associated with the reduced groundwater depth due to excessive water resource exploitation and utilization by surrounding cities.Consequently,T.taklamakanensis showed distinct water use strategies among the different habitats and primarily depended on the relatively stable water sources(deep soil water and groundwater),reflecting its adaptations to the different habitats in the arid desert environment.These findings improve our understanding on determining the water sources and water use strategies of T.taklamakanensis in the Taklimakan Desert.展开更多
Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations ...Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations of soil water content and salinity around natural individual Tamarix ramosissiraa Ledeb. were invetigated in a semi-arid saline region of the upper Yellow River, Northwest China. Specifically, soil water content, electrical conductivity (EC), sodium adsorption ratio (SARa), and salt ions (including Na+, K+, Ca2+, Mg2+ and 8042-) were measured at different soil depths and at different distances from the trunk of T. ramasissima in May, July, and September 2016. The soil water content at the 20-80 cm depth was significantly lower in July and September than in May, indicating that T. ramosissima plants absorb a large amount of water through the roots during the growing period, leading to the decreasing of soil water content in the deep soil layer. At the 0-20 cm depth, there was a salt island effect around individual T. ramosissima, and the ECe differed significantly inside and outside the canopy of T. ramosissima in May and July. Salt bioaccumulation and stemflow were two major contributing factors to this difference. The SAR at the 0-20 cm depth was significantly different inside and outside the canopy of T. ramosissima in the three sampling months. The values of SAR~ at the 60-80 cm depth in May and July were significantly higher than those at the 0-60 cm depth and higher than that at the corresponding depth in September. The distribution of Na+ in the soil was similar to that of the SAI, while the concentrations of K+, Ca2+, and Mg2+ showed significant differences among the sampling months and soil depths. Both season and soil depth had highly significant effects on soil water content, ECe and SARa, whereas distance from the trunk of T. ramosissima only significantly affected ECe. Based on these results, we recommend co-planting of shallow-rooted salt-tolerant species near the Tamarx plants and avoiding planting herbaceous plants inside the canopy of T. ramodssima for afforestation in this semi-arid saline region. The results of this study may provide a reference for appropriate restoration in the semi-arid saline regions of the upper Yellow River.展开更多
This study was performed to observe the effects of water on photosynthesis and water-related physiology in dominant shrubs in shell sand habitats.Four-year-old Periploca sepium seedlings were used as model species.A g...This study was performed to observe the effects of water on photosynthesis and water-related physiology in dominant shrubs in shell sand habitats.Four-year-old Periploca sepium seedlings were used as model species.A gradient of 12 water levels was established by artificially supplying the shell sand with water up to saturation and then allowing natural evapotranspiration to occur.The photo synthetic,chlorophyll fluorescence and stem sap flow parameters of P.sepium were measured under a range of water conditions.The different soil water conditions were classified according to the responses of these parameters.(1)With the increase in the relative water content(RWC)of the shell sand,the parameters of leaf photosynthesis,chlorophyll fluorescence and water-related physiology in P.sepium showed significant critical responses.The net photo synthetic rate(Pn),transpiration rate(Tr),instantaneous water use efficiency(WUE),potential water use efficiency(WUEi),maximum photochemical efficiency(Fv/Fm),actual photochemical efficiency(ΦPSII)and daily accumulation of stem sap flow all increased first and then decreased with increasing RWC,but the corresponding water conditions associated with their maximum values were not the same.An RWC of 69.40%was determined to be the optimal water condition for photosynthesis and water-related physiological activity in P.sepium.At an RWC of 36.61%,the mechanism of photosynthetic inhibition in P.sepium changed from stomatal limitation to nonstomatal limitation;this was also the minimum water requirement for maintaining normal photo synthetic processes.An RWC of 50.27%resulted in the highest WUE in P.sepium,indicating that moderate drought stress increased WUE.(2)Based on the quantitative relationship between the photo synthetic parameters of P.sepium and the shell sand water gradient,the soil water availability was classified into 6 water grades.The RWC range for maintaining strong photosynthesis and high WUE in P.sepium was 63.22-69.98%.(3)Gas exchange in P.sepium was inhibited under drought and waterlogging stresses.Under these conditions,the photosynthetic electron transport chain was blocked,and the dissipation of light energy as heat increased,which ultimately led to a decline in photo synthetic productivity;moreover,transpiration and dissipation were aggravated,and water transmission and utilization processes in P.sepium were hindered.A significant negative feedback regulation mechanism in the photosynthetic and water-related physiological processes of P.sepium was observed;this mechanism allowed P.sepium growing in shell sand to be highly adaptable to water stress.展开更多
旨在探讨不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响,并阐明其相关生理基础。本研究以甬优1540为材料,设置了3种灌溉模式,即长淹灌溉(continuous flooding,CF)、轻度干湿交替灌溉(alternate wetting and moderate dryin...旨在探讨不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响,并阐明其相关生理基础。本研究以甬优1540为材料,设置了3种灌溉模式,即长淹灌溉(continuous flooding,CF)、轻度干湿交替灌溉(alternate wetting and moderate drying, AWMD)以及重度干湿交替灌溉(alternate wetting and severe drying, AWSD)。研究结果表明,与CF相比, AWMD与AWSD均能显著提高水分利用效率,增幅分别为22.6%~25.6%与18.2%~23.1%;AWMD可以显著提高水稻产量,增幅为8.6%~10.0%,而AWSD则显著降低水稻产量,降幅为6.0%~7.5%。与CF相比, AWMD显著降低了拔节期水稻的茎蘖数、地上部干物质重、叶面积指数、移栽至齐穗期的光合势以及移栽至拔节期的作物生长速率,但显著提高了茎蘖成穗率、拔节至齐穗期的作物生长速率、主要生育期水稻根长密度、深根比、比根长、根系总吸收表面积与活跃吸收表面积,以及灌浆后2次土壤复水期的剑叶净光合速率、根系氧化力、根系与叶片中玉米素和玉米素核苷(Z+ZR)含量、籽粒中蔗糖-淀粉代谢途径关键酶活性等指标。以上结果表明, AWMD可以协同提高甬优1540产量与水分利用效率,优化根-冠生长发育特征,提高灌浆期植株生理活性,实现高产与水分高效利用,为本研究最佳水分管理模式。展开更多
Previous studies have shown that water stress can stimulate biosynthesis of secondary metabolites,and physiological and biochemical characteristics of plant can play a key role in its defense responses to water stress...Previous studies have shown that water stress can stimulate biosynthesis of secondary metabolites,and physiological and biochemical characteristics of plant can play a key role in its defense responses to water stress.So the physiological and biochemical characteristics of potted Scutellaria baicalensis Georgi plants were investigated under continuous water stress condition.The results showed that the water content in roots,stems and leaves,together with chlorophyll content of the leaves decreased as the water stress strengthened.Simultaneously,the specific leaf weight increased,and the content of proline and soluble sugar in Scutellaria baicalensis Georgi leaves increased significantly.The changing trends of the baicalin content in the roots,stems and leaves of Scutellaria baicalensis Georgi were different.It increased continuously in roots,while ascended constantly in the stems and leaves during the early days under the water stress,but decreased sharply under the heavy stress.In conclusion,proline and soluble sugar had a close correlation with the drought resistance of Scutellaria baicalensis Georgi.Moderate drought is in favor of synthesizing the secondary metabolites.展开更多
[Objective] Effect of hypoxic water culture on physiological characteristic of water spinach and its hypoxia tolerance were studied.[Method] Water spinach was planted in soil and eutrophication water by means of float...[Objective] Effect of hypoxic water culture on physiological characteristic of water spinach and its hypoxia tolerance were studied.[Method] Water spinach was planted in soil and eutrophication water by means of floating bed,respectively,and the change of physiological indexes including chlorophyll,proline(Pro),malondialdehyde(MDA),soluble sugar and soluble protein in water spinach leaves at mature stage was researched,while the hypoxia tolerance of water spinach and the effect of plant density on water spinach growth were discussed in our paper.[Result] In the hypoxic eutrophication water,the content of total chlorophyll,malondialdehyde,soluble sugar and soluble protein in water spinach leaves was lower than that of soil culture,with higher proline content,which showed that water spinach had better tolerance to hypoxic eutrophication water;the higher the plant density,the lower the chlorophyll content in water spinach leaves,and there was no significant effect of plant density on proline and malondialdehyde content,while soluble protein content was higher under high plant density.[Conclusion] The best plant density of water spinach was 66 plants per floating bed with the area of 2 m2,which could provide theoretical basis for the application of water spinach in floating bed.展开更多
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(U2006215)the National Natural Science Foundation of China(31770761)+2 种基金the Shandong Key Laboratory of Coastal Environmental Processes,YICCAS(2019SDHADKFJJ16)the Natural Science Foundation of Shangdong Province(ZR2020QD003)Taishan Scholars Program of Shandong Province,China(TSQN201909152)。
文摘To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were chosen as the research object.Groundwater with four salinity levels was created,and three groundwater level(GL)were applied for each salinity treatment to measure the root growth and architecture indexes.In the fresh water and brackish water treatments,the topological index(TI)of the T.chinensis roots was close to 0.5,and the root architecture was close to a dichotomous branching pattern.In the saline water and saltwater treatments,the TI of the T.chinensis roots was large and close to 1.0,and the root architecture was close to a herringbone-like branching pattern.Under different GLs and salinities,the total root length was significantly greater than the internal link length,the external link length was greater than the internal link length,and the root system showed an outward expansion strategy.The treatment with fresh water and a GL of 1.5 m was the most suitable for T.chinensis root growth,while the root growth of T.chinensis was the worst in the treatment with saline water and a GL of 0.3 m.T.chinensis can adapt to the changes in soil water and salt by regulating the growth and morphological characteristics of the root system.T.chinensis can adapt to high-salt environments by reducing its root branching and to water deficiencies by expanding the distribution and absorption area of the root system.
基金supported by the National Natural Science Foundation of China (41530745, 41371114, 41361004)the State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating,Gansu Desert Control Research Institute for providing support for sample testing
文摘The complex interactions in desert ecosystems between functional types and environmental conditions could be reflected by plant water use patterns. However, the mechanisms underlying the water use patterns as well as the water sources of Tamarix laxa in the mega-dunes of the Badain Jaran Desert, China, remain unclear. This study investigated the water sources and water use patterns of T. laxa using the stable oxygen isotope method. The δ18O values of xylem water, soil water in different layers(0–200 cm), rainwater, snow water, lake water, atmospheric water vapor, condensate water, and groundwater were measured. The sources of water used by T. laxa were determined using the IsoSource model. The results indicate that T. laxa mainly relies on soil water. At the beginning of the growing season(in May), the species is primarily dependent on water from the middle soil layer(60–120 cm) and deep soil layer(120–200 cm). However, it mainly absorbs water from the shallow soil layer(0–60 cm) as the rainy season commences. In September, water use of T. laxa reverts to the deep soil layer(120–200 cm). The water use patterns of T. laxa are closely linked with heavy precipitation events and soil water content. These findings reveal the drought resistance mechanisms of T. laxa and are of significance for screening species for ecological restoration.
基金supported by the "Research and Development of Sand Prevention Technology of Highway and Soil Erosion Control Technology of Pipelines" of the Strategic Priority Research Program of the Chinese Academy of Sciences "Environmental Changes and Silk Road Civilization in Pan-Third Pole Region"(XDA2003020201)the Key Inter-governmental Projects for International Scientific and Technological Innovation Cooperation of the National Key Research and Development Program of China:"China-Mongolia Cooperation Research and Demonstration in Grassland Desertification Control Technology"(2017YFE0109200)+2 种基金the National Natural Science Foundation of China(41571011,31971731,U1703102)the Key Technical Personnel(Y932111)the Thousand Youth Talents Plan Project(Y472241001)
文摘Tamarix taklamakanensis,a dominant species in the Taklimakan Desert of China,plays a crucial role in stabilizing sand dunes and maintaining regional ecosystem stability.This study aimed to determine the water use strategies of T.taklamakanensis in the Taklimakan Desert under a falling groundwater depth.Four typical T.taklamakanensis nabkha habitats(sandy desert of Tazhong site,saline desert-alluvial plain of Qiemo site,desert-oasis ecotone of Qira site and desert-oasis ecotone of Aral site)were selected with different climate,soil,groundwater and plant cover conditions.Stable isotope values of hydrogen and oxygen were measured for plant xylem water,soil water(soil depths within 0–500 cm),snowmelt water and groundwater in the different habitats.Four potential water sources for T.taklamakanensis,defined as shallow,middle and deep soil water,as well as groundwater,were investigated using a Bayesian isotope mixing model.It was found that groundwater in the Taklimakan Desert was not completely recharged by precipitation,but through the river runoff from snowmelt water in the nearby mountain ranges.The surface soil water content was quickly depleted by strong evaporation,groundwater depth was relatively shallow and the height of T.taklamakanensis nabkha was relatively low,thus T.taklamakanensis primarily utilized the middle(23%±1%)and deep(31%±5%)soil water and groundwater(36%±2%)within the sandy desert habitat.T.taklamakanensis mainly used the deep soil water(55%±4%)and a small amount of groundwater(25%±2%)within the saline desert-alluvial plain habitat,where the soil water content was relatively high and the groundwater depth was shallow.In contrast,within the desert-oasis ecotone in the Qira and Aral sites,T.taklamakanensis primarily utilized the deep soil water(35%±1%and 38%±2%,respectively)and may also use groundwater because the height of T.taklamakanensis nabkha was relatively high in these habitats and the soil water content was relatively low,which is associated with the reduced groundwater depth due to excessive water resource exploitation and utilization by surrounding cities.Consequently,T.taklamakanensis showed distinct water use strategies among the different habitats and primarily depended on the relatively stable water sources(deep soil water and groundwater),reflecting its adaptations to the different habitats in the arid desert environment.These findings improve our understanding on determining the water sources and water use strategies of T.taklamakanensis in the Taklimakan Desert.
基金funded by the Fundamental Research Funds for the Central Universities (2016ZCQ06)the Forestry Industry Research Special Funds for Public Welfare Projects (201504402)the Application Technology of Seaweed Fertilizer Based on Desertification Control and Saline-alkili Soil Improvement (2016HXFWSBXY002)
文摘Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations of soil water content and salinity around natural individual Tamarix ramosissiraa Ledeb. were invetigated in a semi-arid saline region of the upper Yellow River, Northwest China. Specifically, soil water content, electrical conductivity (EC), sodium adsorption ratio (SARa), and salt ions (including Na+, K+, Ca2+, Mg2+ and 8042-) were measured at different soil depths and at different distances from the trunk of T. ramasissima in May, July, and September 2016. The soil water content at the 20-80 cm depth was significantly lower in July and September than in May, indicating that T. ramosissima plants absorb a large amount of water through the roots during the growing period, leading to the decreasing of soil water content in the deep soil layer. At the 0-20 cm depth, there was a salt island effect around individual T. ramosissima, and the ECe differed significantly inside and outside the canopy of T. ramosissima in May and July. Salt bioaccumulation and stemflow were two major contributing factors to this difference. The SAR at the 0-20 cm depth was significantly different inside and outside the canopy of T. ramosissima in the three sampling months. The values of SAR~ at the 60-80 cm depth in May and July were significantly higher than those at the 0-60 cm depth and higher than that at the corresponding depth in September. The distribution of Na+ in the soil was similar to that of the SAI, while the concentrations of K+, Ca2+, and Mg2+ showed significant differences among the sampling months and soil depths. Both season and soil depth had highly significant effects on soil water content, ECe and SARa, whereas distance from the trunk of T. ramosissima only significantly affected ECe. Based on these results, we recommend co-planting of shallow-rooted salt-tolerant species near the Tamarx plants and avoiding planting herbaceous plants inside the canopy of T. ramodssima for afforestation in this semi-arid saline region. The results of this study may provide a reference for appropriate restoration in the semi-arid saline regions of the upper Yellow River.
基金supported by the Forestry Science and Technology Innovation Project of Shandong Province(No.2019LY006)the National Natural Science Foundation of China(No.31770761)+1 种基金Open Research Fund Program of Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta(Binzhou University)(No.2020KFJJ03)the Taishan Scholars Program of Shandong ProvincemChina(No.TSQN201909152)。
文摘This study was performed to observe the effects of water on photosynthesis and water-related physiology in dominant shrubs in shell sand habitats.Four-year-old Periploca sepium seedlings were used as model species.A gradient of 12 water levels was established by artificially supplying the shell sand with water up to saturation and then allowing natural evapotranspiration to occur.The photo synthetic,chlorophyll fluorescence and stem sap flow parameters of P.sepium were measured under a range of water conditions.The different soil water conditions were classified according to the responses of these parameters.(1)With the increase in the relative water content(RWC)of the shell sand,the parameters of leaf photosynthesis,chlorophyll fluorescence and water-related physiology in P.sepium showed significant critical responses.The net photo synthetic rate(Pn),transpiration rate(Tr),instantaneous water use efficiency(WUE),potential water use efficiency(WUEi),maximum photochemical efficiency(Fv/Fm),actual photochemical efficiency(ΦPSII)and daily accumulation of stem sap flow all increased first and then decreased with increasing RWC,but the corresponding water conditions associated with their maximum values were not the same.An RWC of 69.40%was determined to be the optimal water condition for photosynthesis and water-related physiological activity in P.sepium.At an RWC of 36.61%,the mechanism of photosynthetic inhibition in P.sepium changed from stomatal limitation to nonstomatal limitation;this was also the minimum water requirement for maintaining normal photo synthetic processes.An RWC of 50.27%resulted in the highest WUE in P.sepium,indicating that moderate drought stress increased WUE.(2)Based on the quantitative relationship between the photo synthetic parameters of P.sepium and the shell sand water gradient,the soil water availability was classified into 6 water grades.The RWC range for maintaining strong photosynthesis and high WUE in P.sepium was 63.22-69.98%.(3)Gas exchange in P.sepium was inhibited under drought and waterlogging stresses.Under these conditions,the photosynthetic electron transport chain was blocked,and the dissipation of light energy as heat increased,which ultimately led to a decline in photo synthetic productivity;moreover,transpiration and dissipation were aggravated,and water transmission and utilization processes in P.sepium were hindered.A significant negative feedback regulation mechanism in the photosynthetic and water-related physiological processes of P.sepium was observed;this mechanism allowed P.sepium growing in shell sand to be highly adaptable to water stress.
文摘旨在探讨不同灌溉模式对籼粳杂交稻甬优1540产量与水分利用效率的影响,并阐明其相关生理基础。本研究以甬优1540为材料,设置了3种灌溉模式,即长淹灌溉(continuous flooding,CF)、轻度干湿交替灌溉(alternate wetting and moderate drying, AWMD)以及重度干湿交替灌溉(alternate wetting and severe drying, AWSD)。研究结果表明,与CF相比, AWMD与AWSD均能显著提高水分利用效率,增幅分别为22.6%~25.6%与18.2%~23.1%;AWMD可以显著提高水稻产量,增幅为8.6%~10.0%,而AWSD则显著降低水稻产量,降幅为6.0%~7.5%。与CF相比, AWMD显著降低了拔节期水稻的茎蘖数、地上部干物质重、叶面积指数、移栽至齐穗期的光合势以及移栽至拔节期的作物生长速率,但显著提高了茎蘖成穗率、拔节至齐穗期的作物生长速率、主要生育期水稻根长密度、深根比、比根长、根系总吸收表面积与活跃吸收表面积,以及灌浆后2次土壤复水期的剑叶净光合速率、根系氧化力、根系与叶片中玉米素和玉米素核苷(Z+ZR)含量、籽粒中蔗糖-淀粉代谢途径关键酶活性等指标。以上结果表明, AWMD可以协同提高甬优1540产量与水分利用效率,优化根-冠生长发育特征,提高灌浆期植株生理活性,实现高产与水分高效利用,为本研究最佳水分管理模式。
基金Supported by Agricultural Seed Project in Shandong Province Research in Screening Varieties of Bulk Authentic Chinese Herbal Medicines(NO.2005LZ08-01)Special Issues of Major Technologyin Shandong Province(NO.2006GGll09078)~~
文摘Previous studies have shown that water stress can stimulate biosynthesis of secondary metabolites,and physiological and biochemical characteristics of plant can play a key role in its defense responses to water stress.So the physiological and biochemical characteristics of potted Scutellaria baicalensis Georgi plants were investigated under continuous water stress condition.The results showed that the water content in roots,stems and leaves,together with chlorophyll content of the leaves decreased as the water stress strengthened.Simultaneously,the specific leaf weight increased,and the content of proline and soluble sugar in Scutellaria baicalensis Georgi leaves increased significantly.The changing trends of the baicalin content in the roots,stems and leaves of Scutellaria baicalensis Georgi were different.It increased continuously in roots,while ascended constantly in the stems and leaves during the early days under the water stress,but decreased sharply under the heavy stress.In conclusion,proline and soluble sugar had a close correlation with the drought resistance of Scutellaria baicalensis Georgi.Moderate drought is in favor of synthesizing the secondary metabolites.
基金Supported by Agricultural Science and Technology Achievements Transformation Fund Project of Science and Technology Ministry(2009GB23320484)National Spark Program Project(2010GA760003)~~
文摘[Objective] Effect of hypoxic water culture on physiological characteristic of water spinach and its hypoxia tolerance were studied.[Method] Water spinach was planted in soil and eutrophication water by means of floating bed,respectively,and the change of physiological indexes including chlorophyll,proline(Pro),malondialdehyde(MDA),soluble sugar and soluble protein in water spinach leaves at mature stage was researched,while the hypoxia tolerance of water spinach and the effect of plant density on water spinach growth were discussed in our paper.[Result] In the hypoxic eutrophication water,the content of total chlorophyll,malondialdehyde,soluble sugar and soluble protein in water spinach leaves was lower than that of soil culture,with higher proline content,which showed that water spinach had better tolerance to hypoxic eutrophication water;the higher the plant density,the lower the chlorophyll content in water spinach leaves,and there was no significant effect of plant density on proline and malondialdehyde content,while soluble protein content was higher under high plant density.[Conclusion] The best plant density of water spinach was 66 plants per floating bed with the area of 2 m2,which could provide theoretical basis for the application of water spinach in floating bed.