Tamarix spp. (Saltcedar) is a facultative phreatophyte that can tolerate drought when groundwater is not accessed. In addition to deep water uptake, hydraulic redistribution (HR) is another factor contributing to ...Tamarix spp. (Saltcedar) is a facultative phreatophyte that can tolerate drought when groundwater is not accessed. In addition to deep water uptake, hydraulic redistribution (HR) is another factor contributing to the drought tolerance of Tarnarix spp. In this study, data on soil volumetric moisture content (0), lateral root sap flow, and relevant climate variables were used to investigate the patterns, magnitude, and controlling factors of HR of soil water by roots of Tamarix ramosissima Ledeb. in an extremely arid land in Northwest China. Results showed evident diurnal fluctuations in 0 at the depths of 30 and 50 cm, indicating "hydraulic lift" (HL). 0 increased remarkably at 10 and 140 cm but decreased at 30 and 50 cm and slightly changed at 80 cm after rainfall, suggesting a possible "hydraulic descent" (HD). However, no direct evidence was observed in the negative flow of lateral roots, supporting HR (including HL and HD) of T. ramosissima. The HR pathway unlikely occurred via lateral roots; instead, HR possibly occurred through adventitious roots with a diameter of 2-5 mm and a length of 60-100 cm. HR at depths of 20-60 cm ranged from 0.01-1.77 mm/d with an average of 0.43 mm/d, which accounted for an average of 22% of the estimated seasonal total water depletion at 0-160 cm during the growing season. The climate factors, particularly vapor pressure deficit and soil water potential gradient, accounted for at least 33% and 45% of HR variations with depths and years, respectively. In summary, T. ramosissima can be added to the wide list of existing species involved in HR. High levels of HR may represent a considerable fraction of daily soil water depletion and substantially improve plant water status. HR could vary tremendously in terms of years and depths, and this variation could be attributed to climate factors and soil water potential gradient.展开更多
High-resolution observations of cambial phenology and intra-annual growth dynamics are useful approaches for understanding the response of tree growth to climate and environmental change. During the past two decades, ...High-resolution observations of cambial phenology and intra-annual growth dynamics are useful approaches for understanding the response of tree growth to climate and environmental change. During the past two decades, rapid socioeconomic development has increased the demand for water resources in the oases of the middle reaches of the Heihe River in northwestern China, and the lower reaches of the Heihe River have changed from a perennial river to an ephemeral stream with a decreased and degraded riparian zone. Tamarisk(Tamarix ramosissima) is the dominant shrub species of the desert riparian forest. In this study, the daily and seasonal patterns of tamarisk stem diameter growth, including the main period of tree ring formation, were examined. Observations concerning the driving forces of growth changes, along with implications for the ecology of the dendrohydrological area and management of desert riparian forests in similar arid regions, are also presented. The diurnal-seasonal activity of stem diameter and the dynamics of growth ring formation were studied using a point dendrometer and micro-coring methods during the 2012 growing season in shrub tamarisk in a desert riparian forest stand in the lower reaches of the Heihe River in Ejin Banner, Inner Mongolia of northwestern China. Generally, the variation in diurnal diameter of tamarisk was characterized by an unstable multi-peak pattern, with the cumulative stem diameter growth over the growing season following an S-shaped curve. The period from late May to early August was the main period of stem diameter growth and growth-ring formation. Among all of the hydroclimatic factors considered in this study, only groundwater depth was significantly correlated with stem diameter increment during this period. Therefore, for the dendrochronological study, the annual rings of the tamarisk can be used to reconstruct processes that determine the regional water regime, such as river runoff and fluctuations in groundwater depth. For the management of desert riparian forests, suitable groundwater depths must be maintained in the spring and summer to sustain tree health and a suitable stand structure.展开更多
Tamarix ramosissima Ledeb. is a typical hardy desert plant growing in arid regions of Northwest China. Sap flow in stems of Z ramosissima plants were measured continuously to determine the diurnal and seasonal variati...Tamarix ramosissima Ledeb. is a typical hardy desert plant growing in arid regions of Northwest China. Sap flow in stems of Z ramosissima plants were measured continuously to determine the diurnal and seasonal variations of sap flow and to understand the water requirements of this species and the response of sap flow to meteorological factors. This article compared the sap flow rate measured by the heat balance method with the transpiration rate measured by rapid weighing, and validated that heat balance sap flow gauges were reliable for monitoring transpiration. The influence of meteorological factors on stem sap flow during the growing season was: solar radiation 〉 vapor pressure deficit 〉 air temperature 〉 rela- tive humidity 〉 wind speed. Bidirectional sap flows occurred at night, and negative sap flow generally corresponded to high atmospheric humidity. The average error in predicted sap flow rate ranged from -0.78% to 14.00% from June to September and for transpiration the average error was 8.19%. Therefore, based on the functional equations between sap flow and meteorological factors as well as sapwood area, transpiration of an individual plant, and even the stand-level transpiration, can be estimated accurately through extrapolation.展开更多
Caragana korshinskii Kom.and Tamarix ramosissima Ledeb.are pioneer shrubs for water and soil conservation,and for windbreak and sand fixation in arid and semi-arid areas.Understanding the water use characteristics of ...Caragana korshinskii Kom.and Tamarix ramosissima Ledeb.are pioneer shrubs for water and soil conservation,and for windbreak and sand fixation in arid and semi-arid areas.Understanding the water use characteristics of different pioneer shrubs at different ages is of great importance for their survival when extreme rainfall occurs.In recent years,the stable isotope tracing technique has been used in exploring the water use strategies of plants.However,the widespreadδ^(2)H offsets of stem water from its potential sources result in conflicting interpretations of water utilization of plants in arid and semi-arid areas.In this study,we used three sets of hydrogen and oxygen stable isotope data(δ^(2)H andδ^(18)O,correctedδ^(2)H_c1 based on SW-excess andδ^(18)O,and correctedδ^(2)H_c2 based on−8.1‰andδ^(18)O)as inputs for the MixSIAR model to explore the water use characteristics of C.korshinskii and T.ramosissima at different ages and in response to rainfall.The results showed thatδ^(2)H_c1 andδ^(18)O have the best performance,and the contribution rate of deep soil water was underestimated because ofδ^(2)H offset.During the dry periods,C.korshinskii and T.ramosissima at different ages both obtained mostly water from deeper soil layers.After rainfall,the proportions of surface(0-10 cm)and shallow(10-40 cm)soil water for C.korshinskii and T.ramosissima at different ages both increased.Nevertheless,there were different response mechanisms of these two plants for rainfall.In addition,C.korshinskii absorbed various potential water sources,while T.ramosissima only used deep water.These flexible water use characteristics of C.korshinskii and T.ramosissima might facilitate the coexistence of plants once extreme rainfall occurs.Thus,reasonable allocation of different plants may be a good vegetation restoration program in western Chinese Loess Plateau.展开更多
The authors studied the effects using three different levels of irrigation on the growth and biomass allocation in H. ammodendron and T. ramosissima seedlings in the shelterbelt along the Tarim Desert Highway. The thr...The authors studied the effects using three different levels of irrigation on the growth and biomass allocation in H. ammodendron and T. ramosissima seedlings in the shelterbelt along the Tarim Desert Highway. The three irrigation amounts were 35 (CK), 24.5 (treatment 1), and 14 (treatment 2) kg·ind. plant-1·once-1, respectively. The results show that (1) the vertical depth of the two seedlings’ root increased with lower levels of irrigation showing that the two species adapted to decreased irrigation by root elongation in the hinterland of the Taklimakan Desert, and the vertical root depth of H. ammodendron under treatment 2 was notably higher than CK. (2) Compared with CK, the belowground biomass of treatment 1 and 2 both showed a significant increase as follows: H. ammodendron seedlings in- creased by 14.51% and 37.03% under treatment 1 and 2, respectively, while T. ramosissima seedlings increased by 68.19% and 25.78% under treatment 1 and 2, respectively. This means that H. ammoden- dron seedlings were more adapted to the conditions in treatment 2 while T. ramosissima seedlings were better adapted to treatment 1 conditions. (3) When compared with CK, the fine root bomass of these two species all exhibited some increase under both treatments, and ANOVA analysis showed that the biomass of deep layer root of the two species under treatment 2 was notably higher than CK and treatment 1. This should help seedlings to more effectively absorb soil water from deep layers during dry conditions. (4) The root-shoot ratio was different for these two species. For H. ammodendron seed- lings, the root-shoot ratio was less than 1, while for T. ramosissim seedlings it was larger than 1. The root-shoot ratio of H. ammodendron seedlings increased with decreasing levels of irrigation, and that of T. ramosissim seedlings also increased under treatment 2. (5) With decreasing levels of irrigation, due to the difference of species, the growth variation of aboveground indexes was also different, while compared with CK, it was not significant.展开更多
Tamarix ramosissima is one of the con- structive species growing on both sides of Tarim River which is favorable to constituting a natural bar- rier containing local deserts and protecting the oasis. By analyzing char...Tamarix ramosissima is one of the con- structive species growing on both sides of Tarim River which is favorable to constituting a natural bar- rier containing local deserts and protecting the oasis. By analyzing characteristics of the main physiological indexes, such as chlorophyll, soluble sugar, proline (Pro), malondialdehyde (MDA), superoxide dismu- tase (SOD), peroxidase (POD), indole-3-acetic acid (IAA), C3-gibberellins (GA3) and abscisic acid (ABA), at different sections with different water tables in the lower reaches of Tarim River, it has been found that these physiological indexes have close correlations with water tables. In addition, the rational ecological, coercing and critical water tables of T. ramosissima are 2-4 m, 6 m and 10 m, respectively, which pro- vides an important theoretical basis for the ecological conservation of extremely arid regions.展开更多
Aims Preserving and restoring Tamarix ramosissima is urgently required in the Tarim Basin,Northwest China.Using species distribution models to predict the biogeographical distribution of species is regularly used in c...Aims Preserving and restoring Tamarix ramosissima is urgently required in the Tarim Basin,Northwest China.Using species distribution models to predict the biogeographical distribution of species is regularly used in conservation and other management activities.However,the uncertainty in the data and models inevitably reduces their prediction power.The major purpose of this study is to assess the impacts of predictor variables and species distribution models on simulating T.ramosissima distribution,to explore the relationships between predictor variables and species distribution models and to model the potential distribution of T.ramosissima in this basin.Methods Three models—the generalized linear model(GLM),classification and regression tree(CART)and Random Forests—were selected and were processed on the BIOMOD platform.The presence/absence data of T.ramosissima in the Tarim Basin,which were calculated from vegetation maps,were used as response variables.Climate,soil and digital elevation model(DEM)data variables were divided into four datasets and then used as predictors.The four datasets were(i)climate variables,(ii)soil,climate and DEM variables,(iii)principal component analysis(PCA)-based climate variables and(iv)PCA-based soil,climate and DEM variables.Important Findings The results indicate that predictive variables for species distribution models should be chosen carefully,because too many predictors can reduce the prediction power.The effectiveness of using PCA to reduce the correlation among predictors and enhance the modelling power depends on the chosen predictor variables and models.Our results implied that it is better to reduce the correlating predictors before model processing.The Random Forests model was more precise than the GLM and CART models.The best model for T.ramosissima was the Random Forests model with climate predictors alone.Soil variables considered in this study could not significantly improve the model’s prediction accuracy for T.ramosissima.The potential distribution area of T.ramosissima in the Tarim Basin is;3.57310^(4) km^(2),which has the potential to mitigate global warming and produce bioenergy through restoring T.ramosissima in the Tarim Basin.展开更多
基金supported by the Key Project of the Chinese Academy of Sciences (KZZD-EW-04-05)the National Natural Science Foundation of China (91025024)the Western Light Project of the Chinese Academy of Sciences
文摘Tamarix spp. (Saltcedar) is a facultative phreatophyte that can tolerate drought when groundwater is not accessed. In addition to deep water uptake, hydraulic redistribution (HR) is another factor contributing to the drought tolerance of Tarnarix spp. In this study, data on soil volumetric moisture content (0), lateral root sap flow, and relevant climate variables were used to investigate the patterns, magnitude, and controlling factors of HR of soil water by roots of Tamarix ramosissima Ledeb. in an extremely arid land in Northwest China. Results showed evident diurnal fluctuations in 0 at the depths of 30 and 50 cm, indicating "hydraulic lift" (HL). 0 increased remarkably at 10 and 140 cm but decreased at 30 and 50 cm and slightly changed at 80 cm after rainfall, suggesting a possible "hydraulic descent" (HD). However, no direct evidence was observed in the negative flow of lateral roots, supporting HR (including HL and HD) of T. ramosissima. The HR pathway unlikely occurred via lateral roots; instead, HR possibly occurred through adventitious roots with a diameter of 2-5 mm and a length of 60-100 cm. HR at depths of 20-60 cm ranged from 0.01-1.77 mm/d with an average of 0.43 mm/d, which accounted for an average of 22% of the estimated seasonal total water depletion at 0-160 cm during the growing season. The climate factors, particularly vapor pressure deficit and soil water potential gradient, accounted for at least 33% and 45% of HR variations with depths and years, respectively. In summary, T. ramosissima can be added to the wide list of existing species involved in HR. High levels of HR may represent a considerable fraction of daily soil water depletion and substantially improve plant water status. HR could vary tremendously in terms of years and depths, and this variation could be attributed to climate factors and soil water potential gradient.
基金funded by the National Natural Science Foundation of China (40971032, 91125026)
文摘High-resolution observations of cambial phenology and intra-annual growth dynamics are useful approaches for understanding the response of tree growth to climate and environmental change. During the past two decades, rapid socioeconomic development has increased the demand for water resources in the oases of the middle reaches of the Heihe River in northwestern China, and the lower reaches of the Heihe River have changed from a perennial river to an ephemeral stream with a decreased and degraded riparian zone. Tamarisk(Tamarix ramosissima) is the dominant shrub species of the desert riparian forest. In this study, the daily and seasonal patterns of tamarisk stem diameter growth, including the main period of tree ring formation, were examined. Observations concerning the driving forces of growth changes, along with implications for the ecology of the dendrohydrological area and management of desert riparian forests in similar arid regions, are also presented. The diurnal-seasonal activity of stem diameter and the dynamics of growth ring formation were studied using a point dendrometer and micro-coring methods during the 2012 growing season in shrub tamarisk in a desert riparian forest stand in the lower reaches of the Heihe River in Ejin Banner, Inner Mongolia of northwestern China. Generally, the variation in diurnal diameter of tamarisk was characterized by an unstable multi-peak pattern, with the cumulative stem diameter growth over the growing season following an S-shaped curve. The period from late May to early August was the main period of stem diameter growth and growth-ring formation. Among all of the hydroclimatic factors considered in this study, only groundwater depth was significantly correlated with stem diameter increment during this period. Therefore, for the dendrochronological study, the annual rings of the tamarisk can be used to reconstruct processes that determine the regional water regime, such as river runoff and fluctuations in groundwater depth. For the management of desert riparian forests, suitable groundwater depths must be maintained in the spring and summer to sustain tree health and a suitable stand structure.
基金financially supported by the National Natural Science Foundation of China (No. 91125025)
文摘Tamarix ramosissima Ledeb. is a typical hardy desert plant growing in arid regions of Northwest China. Sap flow in stems of Z ramosissima plants were measured continuously to determine the diurnal and seasonal variations of sap flow and to understand the water requirements of this species and the response of sap flow to meteorological factors. This article compared the sap flow rate measured by the heat balance method with the transpiration rate measured by rapid weighing, and validated that heat balance sap flow gauges were reliable for monitoring transpiration. The influence of meteorological factors on stem sap flow during the growing season was: solar radiation 〉 vapor pressure deficit 〉 air temperature 〉 rela- tive humidity 〉 wind speed. Bidirectional sap flows occurred at night, and negative sap flow generally corresponded to high atmospheric humidity. The average error in predicted sap flow rate ranged from -0.78% to 14.00% from June to September and for transpiration the average error was 8.19%. Therefore, based on the functional equations between sap flow and meteorological factors as well as sapwood area, transpiration of an individual plant, and even the stand-level transpiration, can be estimated accurately through extrapolation.
基金This study was funded by the National Natural Science Foundation of China(41771035,42071047)the Foundation for Distinguished Young Scholars of Gansu Province(20JR10RA112)+1 种基金the Northwest Normal University(NWNU-LKZD2021-04)the Department of Education of Gansu Province:"Innovation Star"Program of Excellent Postgraduates(2021CXZX-217).
文摘Caragana korshinskii Kom.and Tamarix ramosissima Ledeb.are pioneer shrubs for water and soil conservation,and for windbreak and sand fixation in arid and semi-arid areas.Understanding the water use characteristics of different pioneer shrubs at different ages is of great importance for their survival when extreme rainfall occurs.In recent years,the stable isotope tracing technique has been used in exploring the water use strategies of plants.However,the widespreadδ^(2)H offsets of stem water from its potential sources result in conflicting interpretations of water utilization of plants in arid and semi-arid areas.In this study,we used three sets of hydrogen and oxygen stable isotope data(δ^(2)H andδ^(18)O,correctedδ^(2)H_c1 based on SW-excess andδ^(18)O,and correctedδ^(2)H_c2 based on−8.1‰andδ^(18)O)as inputs for the MixSIAR model to explore the water use characteristics of C.korshinskii and T.ramosissima at different ages and in response to rainfall.The results showed thatδ^(2)H_c1 andδ^(18)O have the best performance,and the contribution rate of deep soil water was underestimated because ofδ^(2)H offset.During the dry periods,C.korshinskii and T.ramosissima at different ages both obtained mostly water from deeper soil layers.After rainfall,the proportions of surface(0-10 cm)and shallow(10-40 cm)soil water for C.korshinskii and T.ramosissima at different ages both increased.Nevertheless,there were different response mechanisms of these two plants for rainfall.In addition,C.korshinskii absorbed various potential water sources,while T.ramosissima only used deep water.These flexible water use characteristics of C.korshinskii and T.ramosissima might facilitate the coexistence of plants once extreme rainfall occurs.Thus,reasonable allocation of different plants may be a good vegetation restoration program in western Chinese Loess Plateau.
基金Supported by Major Orientation Foundation of the CAS Innovation Program (Grant No. KZCX3-SW-342)Research Developing Planning Program of National High and New Technology of China (Grant No. 2004BA901A21-1)
文摘The authors studied the effects using three different levels of irrigation on the growth and biomass allocation in H. ammodendron and T. ramosissima seedlings in the shelterbelt along the Tarim Desert Highway. The three irrigation amounts were 35 (CK), 24.5 (treatment 1), and 14 (treatment 2) kg·ind. plant-1·once-1, respectively. The results show that (1) the vertical depth of the two seedlings’ root increased with lower levels of irrigation showing that the two species adapted to decreased irrigation by root elongation in the hinterland of the Taklimakan Desert, and the vertical root depth of H. ammodendron under treatment 2 was notably higher than CK. (2) Compared with CK, the belowground biomass of treatment 1 and 2 both showed a significant increase as follows: H. ammodendron seedlings in- creased by 14.51% and 37.03% under treatment 1 and 2, respectively, while T. ramosissima seedlings increased by 68.19% and 25.78% under treatment 1 and 2, respectively. This means that H. ammoden- dron seedlings were more adapted to the conditions in treatment 2 while T. ramosissima seedlings were better adapted to treatment 1 conditions. (3) When compared with CK, the fine root bomass of these two species all exhibited some increase under both treatments, and ANOVA analysis showed that the biomass of deep layer root of the two species under treatment 2 was notably higher than CK and treatment 1. This should help seedlings to more effectively absorb soil water from deep layers during dry conditions. (4) The root-shoot ratio was different for these two species. For H. ammodendron seed- lings, the root-shoot ratio was less than 1, while for T. ramosissim seedlings it was larger than 1. The root-shoot ratio of H. ammodendron seedlings increased with decreasing levels of irrigation, and that of T. ramosissim seedlings also increased under treatment 2. (5) With decreasing levels of irrigation, due to the difference of species, the growth variation of aboveground indexes was also different, while compared with CK, it was not significant.
基金This work was supported by the National Basic Research Program of China (Grant No. 2004CB- 720201)the Knowledge Innovation Project of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos. 90502004 & 30500081).
文摘Tamarix ramosissima is one of the con- structive species growing on both sides of Tarim River which is favorable to constituting a natural bar- rier containing local deserts and protecting the oasis. By analyzing characteristics of the main physiological indexes, such as chlorophyll, soluble sugar, proline (Pro), malondialdehyde (MDA), superoxide dismu- tase (SOD), peroxidase (POD), indole-3-acetic acid (IAA), C3-gibberellins (GA3) and abscisic acid (ABA), at different sections with different water tables in the lower reaches of Tarim River, it has been found that these physiological indexes have close correlations with water tables. In addition, the rational ecological, coercing and critical water tables of T. ramosissima are 2-4 m, 6 m and 10 m, respectively, which pro- vides an important theoretical basis for the ecological conservation of extremely arid regions.
基金National Basic Research Program of China(973 Program)(No.2010CB951303 and No.2009CB421106).
文摘Aims Preserving and restoring Tamarix ramosissima is urgently required in the Tarim Basin,Northwest China.Using species distribution models to predict the biogeographical distribution of species is regularly used in conservation and other management activities.However,the uncertainty in the data and models inevitably reduces their prediction power.The major purpose of this study is to assess the impacts of predictor variables and species distribution models on simulating T.ramosissima distribution,to explore the relationships between predictor variables and species distribution models and to model the potential distribution of T.ramosissima in this basin.Methods Three models—the generalized linear model(GLM),classification and regression tree(CART)and Random Forests—were selected and were processed on the BIOMOD platform.The presence/absence data of T.ramosissima in the Tarim Basin,which were calculated from vegetation maps,were used as response variables.Climate,soil and digital elevation model(DEM)data variables were divided into four datasets and then used as predictors.The four datasets were(i)climate variables,(ii)soil,climate and DEM variables,(iii)principal component analysis(PCA)-based climate variables and(iv)PCA-based soil,climate and DEM variables.Important Findings The results indicate that predictive variables for species distribution models should be chosen carefully,because too many predictors can reduce the prediction power.The effectiveness of using PCA to reduce the correlation among predictors and enhance the modelling power depends on the chosen predictor variables and models.Our results implied that it is better to reduce the correlating predictors before model processing.The Random Forests model was more precise than the GLM and CART models.The best model for T.ramosissima was the Random Forests model with climate predictors alone.Soil variables considered in this study could not significantly improve the model’s prediction accuracy for T.ramosissima.The potential distribution area of T.ramosissima in the Tarim Basin is;3.57310^(4) km^(2),which has the potential to mitigate global warming and produce bioenergy through restoring T.ramosissima in the Tarim Basin.