Tamarix ramosissima Ledeb. is a typical hardy desert plant growing in arid regions of Northwest China. Sap flow in stems of Z ramosissima plants were measured continuously to determine the diurnal and seasonal variati...Tamarix ramosissima Ledeb. is a typical hardy desert plant growing in arid regions of Northwest China. Sap flow in stems of Z ramosissima plants were measured continuously to determine the diurnal and seasonal variations of sap flow and to understand the water requirements of this species and the response of sap flow to meteorological factors. This article compared the sap flow rate measured by the heat balance method with the transpiration rate measured by rapid weighing, and validated that heat balance sap flow gauges were reliable for monitoring transpiration. The influence of meteorological factors on stem sap flow during the growing season was: solar radiation 〉 vapor pressure deficit 〉 air temperature 〉 rela- tive humidity 〉 wind speed. Bidirectional sap flows occurred at night, and negative sap flow generally corresponded to high atmospheric humidity. The average error in predicted sap flow rate ranged from -0.78% to 14.00% from June to September and for transpiration the average error was 8.19%. Therefore, based on the functional equations between sap flow and meteorological factors as well as sapwood area, transpiration of an individual plant, and even the stand-level transpiration, can be estimated accurately through extrapolation.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 91125025)
文摘Tamarix ramosissima Ledeb. is a typical hardy desert plant growing in arid regions of Northwest China. Sap flow in stems of Z ramosissima plants were measured continuously to determine the diurnal and seasonal variations of sap flow and to understand the water requirements of this species and the response of sap flow to meteorological factors. This article compared the sap flow rate measured by the heat balance method with the transpiration rate measured by rapid weighing, and validated that heat balance sap flow gauges were reliable for monitoring transpiration. The influence of meteorological factors on stem sap flow during the growing season was: solar radiation 〉 vapor pressure deficit 〉 air temperature 〉 rela- tive humidity 〉 wind speed. Bidirectional sap flows occurred at night, and negative sap flow generally corresponded to high atmospheric humidity. The average error in predicted sap flow rate ranged from -0.78% to 14.00% from June to September and for transpiration the average error was 8.19%. Therefore, based on the functional equations between sap flow and meteorological factors as well as sapwood area, transpiration of an individual plant, and even the stand-level transpiration, can be estimated accurately through extrapolation.