The Bayingobi basin is the Mesozoic-Cenozoic basin in North China in which the Tamusu uranium deposit is located.The ore-target layer of the deposit is the Lower Cretaceous Bayingobi Formation,which developed as a fan...The Bayingobi basin is the Mesozoic-Cenozoic basin in North China in which the Tamusu uranium deposit is located.The ore-target layer of the deposit is the Lower Cretaceous Bayingobi Formation,which developed as a fan deltashallow lacustrine deposit.The distributary channel sand body of the fan delta plain and the underwater distributary channel sand body of the fan delta front formed a favorable uranium reservoir,so the study of sequence stratigraphy is extremely important to understanding the genesis of uranium deposits.On the basis of field investigation and a large number of borehole logs,the high resolution sequence stratigraphy of the Lower Cretaceous is divided and the system tracts of different periods are established.The relationship between deposition,interlayer oxidation and uranium enrichment is discussed.The Lower Cretaceous Bayingobi Formation can be divided into two fourth-order sequences(Sq1 and Sq2).The lower member of the Bayingobi Formation is referred to as Sq1,which is composed of a falling-stage system tract(FSST)on top.On the other hand,the upper member of the Bayingobi Formation is referred to as Sq2,which is composed of a lowstand system tract(LST),transgressive system tract(TST)and highstand system tract(HST).The lowstand system tract forms a favorable stratigraphic structure(mud-sand-mud formation)with the lacustrine mudstone of the overlying transgressive system tract,that is conducive for the migration of uranium-bearing oxygen water.The organic matter and pyrite in the fan delta sand body,as well as the dark mudstone in the distributary bay,provided a reducing medium for uranium mineralization.The ore body mainly occurs in the distributary channel,underwater distributary channel or the mouth bar of the fan delta.As a result of the moderate thickness,high permeability,favorable barrier and rich reducing medium,the rich ore body mainly occurs in the underwater distributary channel and mouth bar sand body of the delta front.Based on study of the sequence stratigraphy,the model of the sequence,sedimentation and mineralization of the uranium deposit is established,which enriches uranium metallogenic theory and provides a reference for exploration of the same type of uranium deposits.展开更多
Compared to the sandstone-type uranium deposits in the Ordos Basin and the Songliao Basin,the Tamusu uranium deposit in the Bayingobi Basin formed in fault-depression transition region displays distinctive features.Fi...Compared to the sandstone-type uranium deposits in the Ordos Basin and the Songliao Basin,the Tamusu uranium deposit in the Bayingobi Basin formed in fault-depression transition region displays distinctive features.First,the uranium-bearing sandstones and their interlayer oxidation zone extend longitudinally no more than ten kilometers.Second,gravity flow sediments are more common in the uranium-bearing strata.Comprehensive facies analysis indicates that the Upper Member(orebearing horizon)of the Bayingobi Formation was largely deposited in fan deltas that prograded into lakes during period of relatively dry paleoclimate.Spatial distribution patterns of five facies associations along with two depositional environments(fan delta,lake)were reconstructed in this study.The results demonstrated that the depositional systems and their inner genetic facies played different roles in uranium reservoir sandstone,confining beds(isolated barrier beds)and reduction geologic bodies during uranium mineralization process.展开更多
位于巴音戈壁盆地南部的塔木素铀矿床在矿化特征上明显有别于我国北方其他砂岩型铀矿床,对于该矿床的成因也存在较大的争议。通过岩石学、同位素地质学、扫描电子显微镜、阴极发光、径迹蚀刻等综合研究,结果显示塔木素铀矿床巴音戈壁组...位于巴音戈壁盆地南部的塔木素铀矿床在矿化特征上明显有别于我国北方其他砂岩型铀矿床,对于该矿床的成因也存在较大的争议。通过岩石学、同位素地质学、扫描电子显微镜、阴极发光、径迹蚀刻等综合研究,结果显示塔木素铀矿床巴音戈壁组上段第三岩性段(K 1 b 2-3)含铀泥灰岩至少经历了4个阶段的成岩作用,铀矿物呈微粒(粒径<1μm)浸染状分布于最早期的角砾中,具有沉积成岩成因特征,成矿物质主要来自于沉积成岩期水体中溶解的铀并因蒸发浓缩作用而富集在特定的层位。巴音戈壁组上段第二岩性段(K 1 b 2-2)含铀砂岩在沉积成岩阶段盆地内封存的高矿化度地下水与碎屑物之间以及成岩后酸性地表水与碳酸盐胶结物之间共发生了两个阶段的水岩作用,每个阶段形成了表现特征不同的铀矿化。沥青铀矿U-Pb同位素测试结果显示,区内最早的铀矿化形成时间为111.6±8.1 Ma,与砂岩形成时间接近,而最新的铀矿化形成时间为2.5 Ma,具有明显后生成因特征,综合研究显示砂岩中的铀矿化具有沉积成岩及后期层间氧化叠加改造双重成因特征,沉积成岩期成矿物质主要来自封存的地下水,而层间氧化期成矿物质主要来自地表水带入的铀及富铀岩层。同时研究认为塔木素铀矿床存在后期热液活动,但暂未发现热液活动与铀成矿具有直接的成因联系。展开更多
基金funded by the project of Investigation and Exploration of Uranium Deposits in Bayingobi Basin(Grant No.201903,202203)China Nuclear Geology,CNNC。
文摘The Bayingobi basin is the Mesozoic-Cenozoic basin in North China in which the Tamusu uranium deposit is located.The ore-target layer of the deposit is the Lower Cretaceous Bayingobi Formation,which developed as a fan deltashallow lacustrine deposit.The distributary channel sand body of the fan delta plain and the underwater distributary channel sand body of the fan delta front formed a favorable uranium reservoir,so the study of sequence stratigraphy is extremely important to understanding the genesis of uranium deposits.On the basis of field investigation and a large number of borehole logs,the high resolution sequence stratigraphy of the Lower Cretaceous is divided and the system tracts of different periods are established.The relationship between deposition,interlayer oxidation and uranium enrichment is discussed.The Lower Cretaceous Bayingobi Formation can be divided into two fourth-order sequences(Sq1 and Sq2).The lower member of the Bayingobi Formation is referred to as Sq1,which is composed of a falling-stage system tract(FSST)on top.On the other hand,the upper member of the Bayingobi Formation is referred to as Sq2,which is composed of a lowstand system tract(LST),transgressive system tract(TST)and highstand system tract(HST).The lowstand system tract forms a favorable stratigraphic structure(mud-sand-mud formation)with the lacustrine mudstone of the overlying transgressive system tract,that is conducive for the migration of uranium-bearing oxygen water.The organic matter and pyrite in the fan delta sand body,as well as the dark mudstone in the distributary bay,provided a reducing medium for uranium mineralization.The ore body mainly occurs in the distributary channel,underwater distributary channel or the mouth bar of the fan delta.As a result of the moderate thickness,high permeability,favorable barrier and rich reducing medium,the rich ore body mainly occurs in the underwater distributary channel and mouth bar sand body of the delta front.Based on study of the sequence stratigraphy,the model of the sequence,sedimentation and mineralization of the uranium deposit is established,which enriches uranium metallogenic theory and provides a reference for exploration of the same type of uranium deposits.
基金financially supported by the National Natural Sciences Fund (No.42172128)the National Key Research and Development Program of China (No.2018YFC0604200)the International Geoscience Programme (IGCP-675)
文摘Compared to the sandstone-type uranium deposits in the Ordos Basin and the Songliao Basin,the Tamusu uranium deposit in the Bayingobi Basin formed in fault-depression transition region displays distinctive features.First,the uranium-bearing sandstones and their interlayer oxidation zone extend longitudinally no more than ten kilometers.Second,gravity flow sediments are more common in the uranium-bearing strata.Comprehensive facies analysis indicates that the Upper Member(orebearing horizon)of the Bayingobi Formation was largely deposited in fan deltas that prograded into lakes during period of relatively dry paleoclimate.Spatial distribution patterns of five facies associations along with two depositional environments(fan delta,lake)were reconstructed in this study.The results demonstrated that the depositional systems and their inner genetic facies played different roles in uranium reservoir sandstone,confining beds(isolated barrier beds)and reduction geologic bodies during uranium mineralization process.
文摘位于巴音戈壁盆地南部的塔木素铀矿床在矿化特征上明显有别于我国北方其他砂岩型铀矿床,对于该矿床的成因也存在较大的争议。通过岩石学、同位素地质学、扫描电子显微镜、阴极发光、径迹蚀刻等综合研究,结果显示塔木素铀矿床巴音戈壁组上段第三岩性段(K 1 b 2-3)含铀泥灰岩至少经历了4个阶段的成岩作用,铀矿物呈微粒(粒径<1μm)浸染状分布于最早期的角砾中,具有沉积成岩成因特征,成矿物质主要来自于沉积成岩期水体中溶解的铀并因蒸发浓缩作用而富集在特定的层位。巴音戈壁组上段第二岩性段(K 1 b 2-2)含铀砂岩在沉积成岩阶段盆地内封存的高矿化度地下水与碎屑物之间以及成岩后酸性地表水与碳酸盐胶结物之间共发生了两个阶段的水岩作用,每个阶段形成了表现特征不同的铀矿化。沥青铀矿U-Pb同位素测试结果显示,区内最早的铀矿化形成时间为111.6±8.1 Ma,与砂岩形成时间接近,而最新的铀矿化形成时间为2.5 Ma,具有明显后生成因特征,综合研究显示砂岩中的铀矿化具有沉积成岩及后期层间氧化叠加改造双重成因特征,沉积成岩期成矿物质主要来自封存的地下水,而层间氧化期成矿物质主要来自地表水带入的铀及富铀岩层。同时研究认为塔木素铀矿床存在后期热液活动,但暂未发现热液活动与铀成矿具有直接的成因联系。