Natural materials(e.g. rocks and soils) are porous media, whose microstructures present a wide diversity.They generally consist of a heterogeneous solid phase and a porous phase which may be fully or partially saturat...Natural materials(e.g. rocks and soils) are porous media, whose microstructures present a wide diversity.They generally consist of a heterogeneous solid phase and a porous phase which may be fully or partially saturated with one or more fluids. The prediction of elastic and acoustic properties of porous materials is very important in many fields, such as physics of rocks, reservoir geophysics, civil engineering, construction field and study of the behavior of historical monuments. The aim of this work is to predict the elastic and acoustic behaviors of isotropic porous materials of a solid matrix containing dry, saturated and partially saturated spherical pores. For this, a homogenization technique based on the Morie Tanaka model is presented to connect the elastic and acoustic properties to porosity and degree of water saturation. Non-destructive ultrasonic technique is used to determine the elastic properties from measurements of P-wave velocities. The results obtained show the influence of porosity and degree of water saturation on the effective properties. The various predictions of Morie Tanaka model are then compared with experimental results for the elastic and acoustic properties of calcarenite.展开更多
The elastic properties of syntactic foams with coated hollow spherical inclusions have been studied by means of Mori and Tanaka's concept of average stress in the matrix and Eshelby's equivalent inclusion theo...The elastic properties of syntactic foams with coated hollow spherical inclusions have been studied by means of Mori and Tanaka's concept of average stress in the matrix and Eshelby's equivalent inclusion theories.Some formulae to predict the effective modulus of this material have been derived theoretically.Based on these formulae,the influences of coating parameters such as the thickness and (Poisson's) ratio on the modulus of the syntactic foams have been discussed at the same time.展开更多
The mechanical properties such as Young's modulus, hardness and fracture toughness of Lower Silurian Longmaxi shale samples from Youyang area in southeast Chongqing, China were investigated using dot matrix nanoin...The mechanical properties such as Young's modulus, hardness and fracture toughness of Lower Silurian Longmaxi shale samples from Youyang area in southeast Chongqing, China were investigated using dot matrix nanoindentation measurements. With the help of field emission scanning electron microscope(FESEM) and energy dispersive X-ray fluorescence spectroscopy(EDS), the indentation morphology and mineral composition in indentation area were quantitatively analyzed. According to mechanical strength classification, a micromechanical model with three components was introduced and the Mori-Tanaka model was used to upscale mechanical parameters from nano-scale to centimeter-size scale, which were further compared with uniaxial compression results. The experimental results show that there is a positive linear correlation between Young's modulus and hardness and between the Young's modulus and the fracture toughness under nano-scale; the Young's modulus, hardness and fracture toughness perpendicular to the bedding are slightly lower than those parallel with the bedding. According to data statistics, the mechanical properties at the nano-scale follow Weibull distribution feature and the dispersion degree of hardness results is the highest, which is mainly due to shale anisotropy and nanoindentation projection uncertainty. Comparing the results from nanoindentation test, with those from upscaling model and uniaxial compression test shows that the mechanical parameters at the nano-scale are higher than those from upscaling model and uniaxial compression test, which proves mechanical parameters at different scales have differences. It's because the larger the core, the more pores and internal weakness it contains, the less accurate the interpreted results of mechanical parameters will be.展开更多
文摘Natural materials(e.g. rocks and soils) are porous media, whose microstructures present a wide diversity.They generally consist of a heterogeneous solid phase and a porous phase which may be fully or partially saturated with one or more fluids. The prediction of elastic and acoustic properties of porous materials is very important in many fields, such as physics of rocks, reservoir geophysics, civil engineering, construction field and study of the behavior of historical monuments. The aim of this work is to predict the elastic and acoustic behaviors of isotropic porous materials of a solid matrix containing dry, saturated and partially saturated spherical pores. For this, a homogenization technique based on the Morie Tanaka model is presented to connect the elastic and acoustic properties to porosity and degree of water saturation. Non-destructive ultrasonic technique is used to determine the elastic properties from measurements of P-wave velocities. The results obtained show the influence of porosity and degree of water saturation on the effective properties. The various predictions of Morie Tanaka model are then compared with experimental results for the elastic and acoustic properties of calcarenite.
文摘The elastic properties of syntactic foams with coated hollow spherical inclusions have been studied by means of Mori and Tanaka's concept of average stress in the matrix and Eshelby's equivalent inclusion theories.Some formulae to predict the effective modulus of this material have been derived theoretically.Based on these formulae,the influences of coating parameters such as the thickness and (Poisson's) ratio on the modulus of the syntactic foams have been discussed at the same time.
基金Supported by the National Natural Science Foundation of China(51704324,41728004,U1762213)China National Science and Technology Major Project(2016ZX05061)
文摘The mechanical properties such as Young's modulus, hardness and fracture toughness of Lower Silurian Longmaxi shale samples from Youyang area in southeast Chongqing, China were investigated using dot matrix nanoindentation measurements. With the help of field emission scanning electron microscope(FESEM) and energy dispersive X-ray fluorescence spectroscopy(EDS), the indentation morphology and mineral composition in indentation area were quantitatively analyzed. According to mechanical strength classification, a micromechanical model with three components was introduced and the Mori-Tanaka model was used to upscale mechanical parameters from nano-scale to centimeter-size scale, which were further compared with uniaxial compression results. The experimental results show that there is a positive linear correlation between Young's modulus and hardness and between the Young's modulus and the fracture toughness under nano-scale; the Young's modulus, hardness and fracture toughness perpendicular to the bedding are slightly lower than those parallel with the bedding. According to data statistics, the mechanical properties at the nano-scale follow Weibull distribution feature and the dispersion degree of hardness results is the highest, which is mainly due to shale anisotropy and nanoindentation projection uncertainty. Comparing the results from nanoindentation test, with those from upscaling model and uniaxial compression test shows that the mechanical parameters at the nano-scale are higher than those from upscaling model and uniaxial compression test, which proves mechanical parameters at different scales have differences. It's because the larger the core, the more pores and internal weakness it contains, the less accurate the interpreted results of mechanical parameters will be.