We study the real Bonnet surfaces which accept one unique nontrivial isometry that preserves the mean curvature, in the three-dimensional Euclidean space. We give a general criterion for these surfaces and use it to d...We study the real Bonnet surfaces which accept one unique nontrivial isometry that preserves the mean curvature, in the three-dimensional Euclidean space. We give a general criterion for these surfaces and use it to determine the tangential developable surfaces of this kind. They are determined implicitly by elliptic integrals of the third kind. Only the tangential developable surfaces of circular helices are explicit examples for which we completely determine the above unique nontrivial isometry.展开更多
文摘We study the real Bonnet surfaces which accept one unique nontrivial isometry that preserves the mean curvature, in the three-dimensional Euclidean space. We give a general criterion for these surfaces and use it to determine the tangential developable surfaces of this kind. They are determined implicitly by elliptic integrals of the third kind. Only the tangential developable surfaces of circular helices are explicit examples for which we completely determine the above unique nontrivial isometry.