Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect ...Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect othermaterials from factors including acid and alkali,water vapor,bacteria.Therefore,it is necessary to summarize theresearch progress of polymer materials in the field of pollution and corrosion prevention in recent years.This articlesummarizes four types of polymer materials with good weather resistance:polyurethane(PU),polydimethylsiloxane(PDMS),polyvinylidene fluoride(PVDF),and polyvinylidene chloride(PVDC).These four polymer materials aresuitable for making polymer anti-corrosion or anti-fouling materials and each has its own characteristics.PU can firmlyadhere to various substrates,effectively protecting and extending their lifespan,but the environmentally friendly varietiescurrently used,namely water-borne polyurethanes(WPU),generally have poor mechanical properties.PDMS is nontoxicand has excellent hydrophobicity,but its static anti-fouling ability is insufficient when applied in the field of antifouling.PVDF has good chemical resistance and high mechanical properties,good UV resistance making it suitable foroutdoor use like in the marine environment.However,PVDF lacks flexibility after molding and its manufacturing cost isrelatively high.PVDC has excellent water vapor barrier properties,but poor adhesion to metal material surfaces.Therefore,researchers need to modify these four polymers when using them to solve the problem of corrosion orbiofouling.The article will review the research progress of four types of polymers in recent years from the perspectivesof anti-corrosion,anti-fouling,and a strategy named as self-healing that is beneficial for protecting polymer surfacesfrom mechanical damage,and summarize the modification methods adopted by researchers when applying thesematerials.Finally,a summary of the application and the prospects of these polymer materials are presented.展开更多
This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon redu...This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.展开更多
Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential ri...Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential risk to life.There is a direct correlation between report quality and equipment capability.The more able the equipment is-in terms of efficient data gathering,signal to noise ratio,positioning,and coverage-the more actionable the report is.This results in optimal maintenance and repair strategies providing the report is clear and well presented.Furthermore,when considering tank floor storage inspection it is essential that asset owners have total confidence in inspection findings and the ensuing reports.Tank floor inspection equipment must not only be efficient and highly capable,but data sets should be traceable and integrity maintained throughout.Corrosion mapping of large surface areas such as storage tank bottoms is an inherently arduous and time-consuming process.MFL(magnetic flux leakage)based tank bottom scanners present a well-established and highly rated method for inspection.There are many benefits of using modern MFL technology to generate actionable reports.Chief among these includes efficiency of coverage while gaining valuable information regarding defect location,severity,surface origin and the extent of coverage.More recent advancements in modern MFL tank bottom scanners afford the ability to scan and record data sets at areas of the tank bottom which were previously classed as dead zones or areas not scanned due to physical restraints.An example of this includes scanning the CZ(critical zone)which is the area close to the annular to shell junction weld.Inclusion of these additional dead zones increases overall inspection coverage,quality and traceability.Inspection of the CZ areas allows engineers to quickly determine the integrity of arguably the most important area of the tank bottom.Herein we discuss notable developments in CZ coverage,inspection efficiency and data integrity that combines to deliver an actionable report.The asset owner can interrogate this report to develop pertinent and accurate maintenance and repair strategies.展开更多
In the study organic-inorganic hybrid composite, epoxy modified silicone coating and vinyl ester flake mastic were comparatively used as several anti-corrosion materials that provided protection for flue gas desulfu-r...In the study organic-inorganic hybrid composite, epoxy modified silicone coating and vinyl ester flake mastic were comparatively used as several anti-corrosion materials that provided protection for flue gas desulfu-rization (FGD). The relationship between curing conversion rate of hybrid polymer and temperature was investigated by differential scanning calorimeter (DSC). The adhesion strength, coefficient of thermal expansion and flame retardant properties of three anti-corrosion materials were measured and analyzed. A corrosion test in 8% H2SO4 and 5% HCl at temperature cycle of 40°C~ 160°C was applied to study corrosion resistance of several anti-corrosion materials. Gravimetric measurement and morphological observation of three materials before and after corrosion test were comparatively analyzed in the paper. The small weight change and good morphological structure of hybrid composite during corrosion test demonstrate that hybrid composite has better anti-corrosion properties than epoxy modified silicone coating and vinyl ester flake mastic.展开更多
Replacing heavy oil with petrol coke can greatly reduce the cost of glass production,but obviously shorten the service life of refractories used in the regenerator checker body of glass tanks.To prolong the service li...Replacing heavy oil with petrol coke can greatly reduce the cost of glass production,but obviously shorten the service life of refractories used in the regenerator checker body of glass tanks.To prolong the service life of the regenerator checker body,the slag chemical composition and alkali-sulfur ratio of glass tanks after using petrol coke and the damage mechanism of the residual magnesia bricks in the regenerator checker body were studied,as well as the corrosion resistance of three magnesia based bricks(direct bonded magnesia chrome bricks,fused rebonded magnesia chrome bricks,and fused rebonded high-purity magnesium aluminate spinel bricks).On this basis,a series of targeted countermeasures were adopted to optimize the configuration of refractories,significantly improving the service life of checker bricks and meeting the requirements of glass industry development.展开更多
Ozone is the principal active substances and usually employed in ballast water management systems. In the present study, the corrosion protective effect of ozone was conducted by immersion test and electrochemical tec...Ozone is the principal active substances and usually employed in ballast water management systems. In the present study, the corrosion protective effect of ozone was conducted by immersion test and electrochemical techniques. It was found that corrosion protective effect was revealed in the range of 2.0 to 2.7 ppm of ozone concentration in seawater. The ratio of the rust area of specimen became 20% in that concentration region. The rusted area is strongly influenced by the ozone concentration and the flow rate determined by FEM (finite element method). Ozone has a good influence for ballast tanks, i.e., ozone can delay the rust of ballast tanks, provided that the suitable concentration of ozone is selected. In this case, ozone may stop the corrosion at the defects, if a part of the paint in ballast tank is peeled off. However, ozone may also promote the corrosion of steel when the ozone concentration is very high, e.g., 10 ppm. Attention should be paid to the ozone concentration, if we use ozone as an active substance for ballast water management systems.展开更多
This paper deals with modeling corrosion wastage over the fuel tanks' structures at the exemplar of ten aged bulk carriers. In this paper, employed method might be treated as a long term one, and it is based on Weibu...This paper deals with modeling corrosion wastage over the fuel tanks' structures at the exemplar of ten aged bulk carriers. In this paper, employed method might be treated as a long term one, and it is based on Weibull distribution parameters analysis. The purpose of these analyses is optimal assessing of the average corrosion losses for the bulk carriers' fuel tanks areas at different points of time during the whole period of the exploitation, due to uprising the structural stability and safety of bulk carriers in operation. Though, the applied approach, among others, might be of particular importance in determining the amounts (percentage/depths) of time-dependent corrosion losses over different areas of aging bulk carriers' fuel tanks during the operational circles, with the ultimate goal of keeping stability and safety of these vital vessels' structural components.展开更多
Marine resources and industry have become one of the most important pillars in economic development all over the world.However,corrosion of materials is always the most serious problem to the infrastructure and equipm...Marine resources and industry have become one of the most important pillars in economic development all over the world.However,corrosion of materials is always the most serious problem to the infrastructure and equipment served in marine environment.Researchers have found that microbiologically influenced corrosion(MIC)and marine bio-fouling are two main mechanisms of marine corrosions due to the complicated marine environment and marine organisms.This article summarized the latest research progress about these two mechanisms and indicated that both MIC and marine bio-fouling are closely related to the biofilms on material surfaces formed by the marine microorganisms and their metabolites.As a result,to prevent the occurrence of MIC and bio-fouling,it is important to control the microorganisms in biofilms or prevent the adhesion and formation of biofilms.The traditional method of using chemical bactericide or antifoulant faces the problems of pollution and microorganism resistance.This article introduced four research approaches about the new tendency of applying new materials and technologies to cooperate with traditional chemicals to achieve better and longer effects with lower environment pollution through synergistic actions.Finally,some future research tendencies were proposed for whole marine anti-corrosion and anti-fouling areas.展开更多
In this study, anti-corrosion coatings were prepared and coated success- fully on magnesium alloy substrates by mixing nanopowders, solvent, curing agent with epoxy resin. The effect of the amount of iron trioxide (F...In this study, anti-corrosion coatings were prepared and coated success- fully on magnesium alloy substrates by mixing nanopowders, solvent, curing agent with epoxy resin. The effect of the amount of iron trioxide (Fe2O3) on the adhesion strength and corrosion resistance on magnesium alloy was investigated with standard protocols, and electrochemical measurements were also made in 3.5 wt.% NaCl solutions. The surface morphology and corrosion mechanism after corrosion tests was characterized using FESEM analysis. Nanoparticies in matrix acted as filler, and interstitial cross-linked spaces and other coating artifacts regions (micro cracks and voids) would all affect the anti-corrosion properties of coating. The results showed the proper powder content not only provided adhesion strength to these coatings but also improved obviously their anticorrosion. Hydrogen bound to the amine nitrogen (1N) could take part in the curing process rather than hydrogen of the amide site due to the smaller AG and the more stable configuration.展开更多
The corrosion resistance of weathering bridge steels containing conventional contents of Ni(0.20 wt%, 0.42 wt%, 1.50 wt%) and a higher content of Ni(3.55 wt%) in a simulated hot and humid coastal-industrial atmosphere...The corrosion resistance of weathering bridge steels containing conventional contents of Ni(0.20 wt%, 0.42 wt%, 1.50 wt%) and a higher content of Ni(3.55 wt%) in a simulated hot and humid coastal-industrial atmosphere was investigated by corrosion depth loss, scanning electron microscopy–energy-dispersive X-ray spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical methods. The results showed that, with increasing Ni content, the mechanical properties of the bridge steel were markedly improved, the welding parameters were satisfactory at room temperature, and the corrosion resistance was enhanced. When the Ni content was low(≤0.42 wt%), the crystallization process of the corrosion products was substantially promoted, enhancing the stability of the rust layer. When the Ni content was higher(~3.55 wt%), the corrosion reaction of the steel quickly reached a balance, because the initial rapid corrosion induced the formation of a protective rust layer in the early stage. Simultaneously, NiO and NiFe_2O_4 were generated in large quantities; they not only formed a stable, compact, and continuous oxide protective layer, but also strongly inhibited the transformation process of the corrosion products. This inhibition reduced the structural changes in the rust layer, thereby enhancing the protection. However, when the Ni content ranged from 0.42 wt% to 1.50 wt%, the corrosion resistance of the bridge steel increased only slightly.展开更多
E32 grade corrosion resistant steel was welded with welding wires with three different S contents. The mi crostructure, mechanical properties, inclusions, and corrosion behavior of welded joint were investigated. The ...E32 grade corrosion resistant steel was welded with welding wires with three different S contents. The mi crostructure, mechanical properties, inclusions, and corrosion behavior of welded joint were investigated. The joint coupon corrosion test and potentiodynamic polarization test were carried out under the simulated corrosion environ- ment of the inner bottom plates of cargo oil tanks. The pitting initiation and propagation mechanism of the weld metal were studied by scanning electron microscopy and infinite focus. The results indicated that the microstructures of three kinds of weld metals are all composed of acicular ferrite, ferrite side-plate and proeutectoid ferrite. The micro- structure of heat affected zone is composed predominantly of bainite. Joint welded with low S filler wire has good me- chanical properties. S can decrease free corrosion potential and increase the corrosion tendency. The pitting initiation is oxide inclusion or sulfide oxide inclusion complex. S can induce the formation of occluded area and promote the corrosion propagation. The chemical compositions of weld metal is similar to base metal, which can limit the galvanic corrosion between weld metal and base metal, and avoid formation of corrosion step.展开更多
As international maritime organization (IMO) draft 289 was adopted to develop a low-alloy anti-corrosion steel for the deck of cargo oil tank and to understand corrosion mechanism, corrosion behavior of a low-alloy ...As international maritime organization (IMO) draft 289 was adopted to develop a low-alloy anti-corrosion steel for the deck of cargo oil tank and to understand corrosion mechanism, corrosion behavior of a low-alloy steel with chromium contents was studied in O2-CO2-SO2-H2 S wet gas environment. Corrosion rate was measured, and the microstructure and morphology of corrosion product film were characterized by scanning electron microscopy (SEM). The phase and chemical composition of the corrosion product film were investigated by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The effect of misorientation distribution on corro- sion resistance of steel was evaluated by electron backscattered diffraction (EBSD). The results showed that corro- sion rate decreased with increasing chromium content in the low-alloy steel, and the corrosion type was general corrosion. The phenomenon of chromium enrichment was found in corrosion product film consisting of a-FeOOH, γ- FeOOH, sulphur, FeS2 and Fel-xS. The increase of chromium content decreases the amount of high-angle grain boundaries, thus resulting in the improvement of corrosion resistance.展开更多
Corrosion behavior of low-alloy steel was investigated in simulated cargo oil tank (COT) bottom plate service environment (10% NaCl solution, pH = 0.85). The corrosion behavior of inclusion was studied by in-situ ...Corrosion behavior of low-alloy steel was investigated in simulated cargo oil tank (COT) bottom plate service environment (10% NaCl solution, pH = 0.85). The corrosion behavior of inclusion was studied by in-situ scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It was found that pitting corrosion was inclined to occur around the place where inclusions exist. After initial corrosion, an area of 10-20μm in diameter was formed as a cireinate cathode around the edge of inclusion. MnS inclusion dissolved in the simulated COT corrosion solution before low-alloy steel matrix, and pitting was formed at the place where MnS dissolved. TiO2 inclusion dissolved in the simulated COT corrosion solution after low alloy steel matrix, and pitting was formed at the place where steel matrix dissolved. The corrosion tended to occur at the area where the curvature radius of inclusion is smaller. The size of round TiO2 inclusions had little influence on corrosion behavior in this certain environment.展开更多
A simulated corrosion test apparatus was used to investigate the corrosion behavior of a low alloy steel under simulated upper deck conditions in a cargo oil tank. The estimated corrosion loss of conventional E36 clas...A simulated corrosion test apparatus was used to investigate the corrosion behavior of a low alloy steel under simulated upper deck conditions in a cargo oil tank. The estimated corrosion loss of conventional E36 class ship plate steel is 4.27 mm, which is clearly inadequate compared with the standard adopted by International Maritime Organization. Outer rust layer of specimens starts to peel off after 77 days and becomes fragmented after 98 days. X-ray diffraction, scanning electron micros- copy, and Raman spectroscopy revealed that the resulting rust is composed of σ-FeOOH (the main protective phase), Fe2O3, FeS, elemental S, and FeSO4. FeSO4 in the interface of the base and rust layer leads to localized corrosion. Elemental sulfur forms on the surface of σ-FeOOH, and the quantity and size thereof increase with increasing corrosion time. Furthermore, layered elemental sulfur promotes fracture and peels off the rust layer.展开更多
The content of biodiesel mixed with diesel fuel were compared to inspect the fuel resistance of thin resin Cr-free steel sheets, which are widely used as steel sheets of automobile fuel tank. Some additives which can ...The content of biodiesel mixed with diesel fuel were compared to inspect the fuel resistance of thin resin Cr-free steel sheets, which are widely used as steel sheets of automobile fuel tank. Some additives which can be presented during the process of biodiesel preparation were added for CCT (Cyclic Corrosion Test). These additives can accelerate the occurrence of corrosion. The corrosion was appeared on the coating and painting layer and in serious cases even substrate material was corroded. For methanol, mixing with blended fuel showed the reduction in corroded area as the additive concentration was reduced in the mixed fuel. Especially the peroxide hydrogen showed the strongest corrosiveness. It is known that formic acid has a tendency of weaker corrosiveness than peroxide hydrogen, but the corrosion is occurred throughout the specimen. Water is not mixed well with fuel, and does not seem to impact on corrosion significantly. However, water is easily mixed with other additives and is considered to facilitate the corrosion by other additives.展开更多
Hot corrosion has been extensively observed in various high temperature applications,which might cause large economic losses.To deepen the insight and understanding of hot corrosion,herein,we provide a detailed discus...Hot corrosion has been extensively observed in various high temperature applications,which might cause large economic losses.To deepen the insight and understanding of hot corrosion,herein,we provide a detailed discussion on hot corrosion induced by molten sulfate salt,in which Na_(2)SO_(4)is the main chemical reactant.The hot corrosion is triggered and sustained by the negative solubility gradient of protective oxide from the oxide/salt interface to salt/gas interface.In this work,we reviewed several key factors,including temperature,gas composition,molten salt composition,alloy element and external stress,influencing the hot corrosion of alloy beneath the molten salt.The application of anti-corrosion coating seems to be the most effective and commercial mothed to mitigate hot corrosion.Therefore,the progress of the development of effective coatings,e.g.,Ni-Cr coatings,aluminide coatings,silicide coatings and MCrAlY(X)coatings,has also been summarized.展开更多
Graphene nanosheets are widely used in anti-corrosion polymeric coating as filler,owing to the excellent electrochemical inertness and barrier property.However,as the arrangement of graphene nanosheets is difficult to...Graphene nanosheets are widely used in anti-corrosion polymeric coating as filler,owing to the excellent electrochemical inertness and barrier property.However,as the arrangement of graphene nanosheets is difficult to form a perfect layered structure,polymeric coating with graphene nanosheets usually needs micron-scale thickness to ensure the enhancement of corrosion protection.In this work,layer-by-layer stacked graphene nanocoatings were fabricated on stainless steel by self-assembly based on Marangoni effect.The anti-corrosion property of graphene coatings were studied through Tafel polarization curves,electrochemical impedance spectroscopy and accelerated corrosion test with extra applied voltage.The self corrosion current density of optimized three-layered graphene coated sample was one quarter of that of bare stainless steel.And the self corrosion potential of optimized sample is increased to-0.045 V.According to the results,graphene nanocoatings composed of layered nanosheets exhibits good anticorrosion property.Besides,the self-assembly method provide a promising approach to make layeredstructure coating for other researches about 2 D material nanosheets.展开更多
Plasma electrolytic oxidation(PEO)is a promising surface treatment to generate adherent and thick anti-corrosive coating on light-weight metals(Al,Mg,Ti,etc.)using an eco-friendly alkaline electrolyte.High energy plas...Plasma electrolytic oxidation(PEO)is a promising surface treatment to generate adherent and thick anti-corrosive coating on light-weight metals(Al,Mg,Ti,etc.)using an eco-friendly alkaline electrolyte.High energy plasma,however,inevitably generates porous structures that limit their practical performance.The present study proposes a straight-forward simple method by utilizing sub-zero electrolyte(268 K)to alter the plasma characteristics during formation of the protective coating on AZ31 Mg alloy via PEO with a comparison to the electrolyte at room temperature(298 K).In refrigerated electrolyte,the formation of micro-defects is suppressed relatively at the expense of low coating growth,which is measured to be twice lower than that at 298 K due to the temperature-dependent soft plasma discharges contributing to the development of the present coating.As a consequence,corrosion resistance of the sample processed at 268 K is superior to that of 298K,implying that the effect of coating thickness is less dominant than that of compactness.This phenomenon is interpreted in relation to the ionic movement and oxide solidification controlled by soft plasma discharges arising from the temperature gradient between electrolyte and surface of the substrate during PEO.展开更多
Cavitation tests of hydraulic model were carried out in vacuum tank. A classical theory for cavitation tests in vacuum tank has been used. According to two principles, the test procedure in vacuum tank and the predict...Cavitation tests of hydraulic model were carried out in vacuum tank. A classical theory for cavitation tests in vacuum tank has been used. According to two principles, the test procedure in vacuum tank and the prediction of cavitation features on prototype were obtained. However, by using these test results it can not make a reliable prediction of cavitation feature on prototype. It shows what should be the considerable reasons for the difficulties in comparison between the results of cavitation tests in vacuum tank and how to improve the cavitation tests under a condition of vacuum pressure.展开更多
The environment and structure of the tanks used in aquaculture vessels are remarkably different from those of ordinary ships,and the resulting problem of structural strength is related to breeding safety.In this study...The environment and structure of the tanks used in aquaculture vessels are remarkably different from those of ordinary ships,and the resulting problem of structural strength is related to breeding safety.In this study,a model of aquaculture tank corrosion was constructed by using the multiphysical field coupling analysis software COMSOL Multiphysics,and wave and sloshing loads were calculated on the basis of potential flow theory and computational fluid dynamics.The influence of different calculation methods for corrosion allowance and sloshing load on the structural responses of aquaculture tanks was analyzed.Through our calculations,we found that the corrosion of aquaculture tanks is different from that of ordinary ships.The corrosion allowance in Rules for the Classification of Sea-going Steel Ships is small,and the influence of the aquaculture environment on corrosion can be ignored.Compared with the method set in the relevant rules,our proposed coupling direct calculation method for the structural response calculation of aquaculture tanks can better combine the specific environment of aquaculture tanks and provide more accurate calculations.展开更多
基金Project(ZR2022QD001)supported by the Shandong Provincial Natural Science Youth Fund Project,ChinaProject(42306228)supported by the National Natural Science Foundation of ChinaProject(2022CXPT027)supported by the Key R&D Program of Shandong Province,China。
文摘Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect othermaterials from factors including acid and alkali,water vapor,bacteria.Therefore,it is necessary to summarize theresearch progress of polymer materials in the field of pollution and corrosion prevention in recent years.This articlesummarizes four types of polymer materials with good weather resistance:polyurethane(PU),polydimethylsiloxane(PDMS),polyvinylidene fluoride(PVDF),and polyvinylidene chloride(PVDC).These four polymer materials aresuitable for making polymer anti-corrosion or anti-fouling materials and each has its own characteristics.PU can firmlyadhere to various substrates,effectively protecting and extending their lifespan,but the environmentally friendly varietiescurrently used,namely water-borne polyurethanes(WPU),generally have poor mechanical properties.PDMS is nontoxicand has excellent hydrophobicity,but its static anti-fouling ability is insufficient when applied in the field of antifouling.PVDF has good chemical resistance and high mechanical properties,good UV resistance making it suitable foroutdoor use like in the marine environment.However,PVDF lacks flexibility after molding and its manufacturing cost isrelatively high.PVDC has excellent water vapor barrier properties,but poor adhesion to metal material surfaces.Therefore,researchers need to modify these four polymers when using them to solve the problem of corrosion orbiofouling.The article will review the research progress of four types of polymers in recent years from the perspectivesof anti-corrosion,anti-fouling,and a strategy named as self-healing that is beneficial for protecting polymer surfacesfrom mechanical damage,and summarize the modification methods adopted by researchers when applying thesematerials.Finally,a summary of the application and the prospects of these polymer materials are presented.
文摘This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.
文摘Every day,an NDT(Non-Destructive Testing)report will govern key decisions and inform inspection strategies that could affect the flow of millions of dollars which ultimately affects local environments and potential risk to life.There is a direct correlation between report quality and equipment capability.The more able the equipment is-in terms of efficient data gathering,signal to noise ratio,positioning,and coverage-the more actionable the report is.This results in optimal maintenance and repair strategies providing the report is clear and well presented.Furthermore,when considering tank floor storage inspection it is essential that asset owners have total confidence in inspection findings and the ensuing reports.Tank floor inspection equipment must not only be efficient and highly capable,but data sets should be traceable and integrity maintained throughout.Corrosion mapping of large surface areas such as storage tank bottoms is an inherently arduous and time-consuming process.MFL(magnetic flux leakage)based tank bottom scanners present a well-established and highly rated method for inspection.There are many benefits of using modern MFL technology to generate actionable reports.Chief among these includes efficiency of coverage while gaining valuable information regarding defect location,severity,surface origin and the extent of coverage.More recent advancements in modern MFL tank bottom scanners afford the ability to scan and record data sets at areas of the tank bottom which were previously classed as dead zones or areas not scanned due to physical restraints.An example of this includes scanning the CZ(critical zone)which is the area close to the annular to shell junction weld.Inclusion of these additional dead zones increases overall inspection coverage,quality and traceability.Inspection of the CZ areas allows engineers to quickly determine the integrity of arguably the most important area of the tank bottom.Herein we discuss notable developments in CZ coverage,inspection efficiency and data integrity that combines to deliver an actionable report.The asset owner can interrogate this report to develop pertinent and accurate maintenance and repair strategies.
文摘In the study organic-inorganic hybrid composite, epoxy modified silicone coating and vinyl ester flake mastic were comparatively used as several anti-corrosion materials that provided protection for flue gas desulfu-rization (FGD). The relationship between curing conversion rate of hybrid polymer and temperature was investigated by differential scanning calorimeter (DSC). The adhesion strength, coefficient of thermal expansion and flame retardant properties of three anti-corrosion materials were measured and analyzed. A corrosion test in 8% H2SO4 and 5% HCl at temperature cycle of 40°C~ 160°C was applied to study corrosion resistance of several anti-corrosion materials. Gravimetric measurement and morphological observation of three materials before and after corrosion test were comparatively analyzed in the paper. The small weight change and good morphological structure of hybrid composite during corrosion test demonstrate that hybrid composite has better anti-corrosion properties than epoxy modified silicone coating and vinyl ester flake mastic.
文摘Replacing heavy oil with petrol coke can greatly reduce the cost of glass production,but obviously shorten the service life of refractories used in the regenerator checker body of glass tanks.To prolong the service life of the regenerator checker body,the slag chemical composition and alkali-sulfur ratio of glass tanks after using petrol coke and the damage mechanism of the residual magnesia bricks in the regenerator checker body were studied,as well as the corrosion resistance of three magnesia based bricks(direct bonded magnesia chrome bricks,fused rebonded magnesia chrome bricks,and fused rebonded high-purity magnesium aluminate spinel bricks).On this basis,a series of targeted countermeasures were adopted to optimize the configuration of refractories,significantly improving the service life of checker bricks and meeting the requirements of glass industry development.
文摘Ozone is the principal active substances and usually employed in ballast water management systems. In the present study, the corrosion protective effect of ozone was conducted by immersion test and electrochemical techniques. It was found that corrosion protective effect was revealed in the range of 2.0 to 2.7 ppm of ozone concentration in seawater. The ratio of the rust area of specimen became 20% in that concentration region. The rusted area is strongly influenced by the ozone concentration and the flow rate determined by FEM (finite element method). Ozone has a good influence for ballast tanks, i.e., ozone can delay the rust of ballast tanks, provided that the suitable concentration of ozone is selected. In this case, ozone may stop the corrosion at the defects, if a part of the paint in ballast tank is peeled off. However, ozone may also promote the corrosion of steel when the ozone concentration is very high, e.g., 10 ppm. Attention should be paid to the ozone concentration, if we use ozone as an active substance for ballast water management systems.
文摘This paper deals with modeling corrosion wastage over the fuel tanks' structures at the exemplar of ten aged bulk carriers. In this paper, employed method might be treated as a long term one, and it is based on Weibull distribution parameters analysis. The purpose of these analyses is optimal assessing of the average corrosion losses for the bulk carriers' fuel tanks areas at different points of time during the whole period of the exploitation, due to uprising the structural stability and safety of bulk carriers in operation. Though, the applied approach, among others, might be of particular importance in determining the amounts (percentage/depths) of time-dependent corrosion losses over different areas of aging bulk carriers' fuel tanks during the operational circles, with the ultimate goal of keeping stability and safety of these vital vessels' structural components.
基金supported by the National Key R&D Program of China(2018YFC1105304)the National Natural Science Foundation of China(Grant Nos.51702106)+1 种基金the Natural Science Foundation of Guangdong Province(2016A030308014)China Postdoctoral Science Foundation(Grant Nos.2017M622686,2018T110865).
文摘Marine resources and industry have become one of the most important pillars in economic development all over the world.However,corrosion of materials is always the most serious problem to the infrastructure and equipment served in marine environment.Researchers have found that microbiologically influenced corrosion(MIC)and marine bio-fouling are two main mechanisms of marine corrosions due to the complicated marine environment and marine organisms.This article summarized the latest research progress about these two mechanisms and indicated that both MIC and marine bio-fouling are closely related to the biofilms on material surfaces formed by the marine microorganisms and their metabolites.As a result,to prevent the occurrence of MIC and bio-fouling,it is important to control the microorganisms in biofilms or prevent the adhesion and formation of biofilms.The traditional method of using chemical bactericide or antifoulant faces the problems of pollution and microorganism resistance.This article introduced four research approaches about the new tendency of applying new materials and technologies to cooperate with traditional chemicals to achieve better and longer effects with lower environment pollution through synergistic actions.Finally,some future research tendencies were proposed for whole marine anti-corrosion and anti-fouling areas.
文摘In this study, anti-corrosion coatings were prepared and coated success- fully on magnesium alloy substrates by mixing nanopowders, solvent, curing agent with epoxy resin. The effect of the amount of iron trioxide (Fe2O3) on the adhesion strength and corrosion resistance on magnesium alloy was investigated with standard protocols, and electrochemical measurements were also made in 3.5 wt.% NaCl solutions. The surface morphology and corrosion mechanism after corrosion tests was characterized using FESEM analysis. Nanoparticies in matrix acted as filler, and interstitial cross-linked spaces and other coating artifacts regions (micro cracks and voids) would all affect the anti-corrosion properties of coating. The results showed the proper powder content not only provided adhesion strength to these coatings but also improved obviously their anticorrosion. Hydrogen bound to the amine nitrogen (1N) could take part in the curing process rather than hydrogen of the amide site due to the smaller AG and the more stable configuration.
基金financially supported by the National Natural Science Foundation of China (No. 51304040)the Fundamental Research Funds for the Central Universities (No. N150204008)
文摘The corrosion resistance of weathering bridge steels containing conventional contents of Ni(0.20 wt%, 0.42 wt%, 1.50 wt%) and a higher content of Ni(3.55 wt%) in a simulated hot and humid coastal-industrial atmosphere was investigated by corrosion depth loss, scanning electron microscopy–energy-dispersive X-ray spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical methods. The results showed that, with increasing Ni content, the mechanical properties of the bridge steel were markedly improved, the welding parameters were satisfactory at room temperature, and the corrosion resistance was enhanced. When the Ni content was low(≤0.42 wt%), the crystallization process of the corrosion products was substantially promoted, enhancing the stability of the rust layer. When the Ni content was higher(~3.55 wt%), the corrosion reaction of the steel quickly reached a balance, because the initial rapid corrosion induced the formation of a protective rust layer in the early stage. Simultaneously, NiO and NiFe_2O_4 were generated in large quantities; they not only formed a stable, compact, and continuous oxide protective layer, but also strongly inhibited the transformation process of the corrosion products. This inhibition reduced the structural changes in the rust layer, thereby enhancing the protection. However, when the Ni content ranged from 0.42 wt% to 1.50 wt%, the corrosion resistance of the bridge steel increased only slightly.
基金Sponsored by National Key Technology Research and Development Program of China(2011BAE25B01)
文摘E32 grade corrosion resistant steel was welded with welding wires with three different S contents. The mi crostructure, mechanical properties, inclusions, and corrosion behavior of welded joint were investigated. The joint coupon corrosion test and potentiodynamic polarization test were carried out under the simulated corrosion environ- ment of the inner bottom plates of cargo oil tanks. The pitting initiation and propagation mechanism of the weld metal were studied by scanning electron microscopy and infinite focus. The results indicated that the microstructures of three kinds of weld metals are all composed of acicular ferrite, ferrite side-plate and proeutectoid ferrite. The micro- structure of heat affected zone is composed predominantly of bainite. Joint welded with low S filler wire has good me- chanical properties. S can decrease free corrosion potential and increase the corrosion tendency. The pitting initiation is oxide inclusion or sulfide oxide inclusion complex. S can induce the formation of occluded area and promote the corrosion propagation. The chemical compositions of weld metal is similar to base metal, which can limit the galvanic corrosion between weld metal and base metal, and avoid formation of corrosion step.
基金Item Sponsored by National Science and Technology Major Project of the Ministry of Science and Technology of China(2011ZX05016-004)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2011BAE25B00)
文摘As international maritime organization (IMO) draft 289 was adopted to develop a low-alloy anti-corrosion steel for the deck of cargo oil tank and to understand corrosion mechanism, corrosion behavior of a low-alloy steel with chromium contents was studied in O2-CO2-SO2-H2 S wet gas environment. Corrosion rate was measured, and the microstructure and morphology of corrosion product film were characterized by scanning electron microscopy (SEM). The phase and chemical composition of the corrosion product film were investigated by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The effect of misorientation distribution on corro- sion resistance of steel was evaluated by electron backscattered diffraction (EBSD). The results showed that corro- sion rate decreased with increasing chromium content in the low-alloy steel, and the corrosion type was general corrosion. The phenomenon of chromium enrichment was found in corrosion product film consisting of a-FeOOH, γ- FeOOH, sulphur, FeS2 and Fel-xS. The increase of chromium content decreases the amount of high-angle grain boundaries, thus resulting in the improvement of corrosion resistance.
基金Item Sponsored by National Science and Technology Major Project of the Ministry of Science and Technology of China(2011ZX05016-004)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2011BAE25B00)
文摘Corrosion behavior of low-alloy steel was investigated in simulated cargo oil tank (COT) bottom plate service environment (10% NaCl solution, pH = 0.85). The corrosion behavior of inclusion was studied by in-situ scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It was found that pitting corrosion was inclined to occur around the place where inclusions exist. After initial corrosion, an area of 10-20μm in diameter was formed as a cireinate cathode around the edge of inclusion. MnS inclusion dissolved in the simulated COT corrosion solution before low-alloy steel matrix, and pitting was formed at the place where MnS dissolved. TiO2 inclusion dissolved in the simulated COT corrosion solution after low alloy steel matrix, and pitting was formed at the place where steel matrix dissolved. The corrosion tended to occur at the area where the curvature radius of inclusion is smaller. The size of round TiO2 inclusions had little influence on corrosion behavior in this certain environment.
文摘A simulated corrosion test apparatus was used to investigate the corrosion behavior of a low alloy steel under simulated upper deck conditions in a cargo oil tank. The estimated corrosion loss of conventional E36 class ship plate steel is 4.27 mm, which is clearly inadequate compared with the standard adopted by International Maritime Organization. Outer rust layer of specimens starts to peel off after 77 days and becomes fragmented after 98 days. X-ray diffraction, scanning electron micros- copy, and Raman spectroscopy revealed that the resulting rust is composed of σ-FeOOH (the main protective phase), Fe2O3, FeS, elemental S, and FeSO4. FeSO4 in the interface of the base and rust layer leads to localized corrosion. Elemental sulfur forms on the surface of σ-FeOOH, and the quantity and size thereof increase with increasing corrosion time. Furthermore, layered elemental sulfur promotes fracture and peels off the rust layer.
文摘The content of biodiesel mixed with diesel fuel were compared to inspect the fuel resistance of thin resin Cr-free steel sheets, which are widely used as steel sheets of automobile fuel tank. Some additives which can be presented during the process of biodiesel preparation were added for CCT (Cyclic Corrosion Test). These additives can accelerate the occurrence of corrosion. The corrosion was appeared on the coating and painting layer and in serious cases even substrate material was corroded. For methanol, mixing with blended fuel showed the reduction in corroded area as the additive concentration was reduced in the mixed fuel. Especially the peroxide hydrogen showed the strongest corrosiveness. It is known that formic acid has a tendency of weaker corrosiveness than peroxide hydrogen, but the corrosion is occurred throughout the specimen. Water is not mixed well with fuel, and does not seem to impact on corrosion significantly. However, water is easily mixed with other additives and is considered to facilitate the corrosion by other additives.
基金funded by the U.S.Department of Energy,National Energy Technology Laboratory(NETL)under the contract number DE-FE0031548。
文摘Hot corrosion has been extensively observed in various high temperature applications,which might cause large economic losses.To deepen the insight and understanding of hot corrosion,herein,we provide a detailed discussion on hot corrosion induced by molten sulfate salt,in which Na_(2)SO_(4)is the main chemical reactant.The hot corrosion is triggered and sustained by the negative solubility gradient of protective oxide from the oxide/salt interface to salt/gas interface.In this work,we reviewed several key factors,including temperature,gas composition,molten salt composition,alloy element and external stress,influencing the hot corrosion of alloy beneath the molten salt.The application of anti-corrosion coating seems to be the most effective and commercial mothed to mitigate hot corrosion.Therefore,the progress of the development of effective coatings,e.g.,Ni-Cr coatings,aluminide coatings,silicide coatings and MCrAlY(X)coatings,has also been summarized.
基金the financial support by the National Natural Science Foundation of China(Nos.51573201,51501209,201675165 and 61901460)NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(No.U1709205)+7 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA22000000)Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YZ201640)Science and Technology Major Project of Ningbo(Nos.2016S1002 and 2016B10038)International S&T Cooperation Program of Ningbo(No.2017D10016)China Postdoctoral Science Foundation(No.2019M653125)for financial supportthe Chinese Academy of Sciences for Hundred Talents ProgramChinese Central Government for Thousand Young Talents Program3315 Program of Ningbo。
文摘Graphene nanosheets are widely used in anti-corrosion polymeric coating as filler,owing to the excellent electrochemical inertness and barrier property.However,as the arrangement of graphene nanosheets is difficult to form a perfect layered structure,polymeric coating with graphene nanosheets usually needs micron-scale thickness to ensure the enhancement of corrosion protection.In this work,layer-by-layer stacked graphene nanocoatings were fabricated on stainless steel by self-assembly based on Marangoni effect.The anti-corrosion property of graphene coatings were studied through Tafel polarization curves,electrochemical impedance spectroscopy and accelerated corrosion test with extra applied voltage.The self corrosion current density of optimized three-layered graphene coated sample was one quarter of that of bare stainless steel.And the self corrosion potential of optimized sample is increased to-0.045 V.According to the results,graphene nanocoatings composed of layered nanosheets exhibits good anticorrosion property.Besides,the self-assembly method provide a promising approach to make layeredstructure coating for other researches about 2 D material nanosheets.
基金the Mid-Level Researcher National Project of the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea(NRF-2020R1A2C2004192)supported partly by the Competency Development Program for Industry Specialist of the Korea Institute for Advancement of Technology(KIAT)funded by the Ministry of Trade,Industry,and Energy,Republic of Korea(P0002019)。
文摘Plasma electrolytic oxidation(PEO)is a promising surface treatment to generate adherent and thick anti-corrosive coating on light-weight metals(Al,Mg,Ti,etc.)using an eco-friendly alkaline electrolyte.High energy plasma,however,inevitably generates porous structures that limit their practical performance.The present study proposes a straight-forward simple method by utilizing sub-zero electrolyte(268 K)to alter the plasma characteristics during formation of the protective coating on AZ31 Mg alloy via PEO with a comparison to the electrolyte at room temperature(298 K).In refrigerated electrolyte,the formation of micro-defects is suppressed relatively at the expense of low coating growth,which is measured to be twice lower than that at 298 K due to the temperature-dependent soft plasma discharges contributing to the development of the present coating.As a consequence,corrosion resistance of the sample processed at 268 K is superior to that of 298K,implying that the effect of coating thickness is less dominant than that of compactness.This phenomenon is interpreted in relation to the ionic movement and oxide solidification controlled by soft plasma discharges arising from the temperature gradient between electrolyte and surface of the substrate during PEO.
文摘Cavitation tests of hydraulic model were carried out in vacuum tank. A classical theory for cavitation tests in vacuum tank has been used. According to two principles, the test procedure in vacuum tank and the prediction of cavitation features on prototype were obtained. However, by using these test results it can not make a reliable prediction of cavitation feature on prototype. It shows what should be the considerable reasons for the difficulties in comparison between the results of cavitation tests in vacuum tank and how to improve the cavitation tests under a condition of vacuum pressure.
基金financially supported by the National Natural Science Foundation of China(Grant No.52071110)Fundamental Research Funds for the Central Universities(Grant No.3072022QBZ0101).
文摘The environment and structure of the tanks used in aquaculture vessels are remarkably different from those of ordinary ships,and the resulting problem of structural strength is related to breeding safety.In this study,a model of aquaculture tank corrosion was constructed by using the multiphysical field coupling analysis software COMSOL Multiphysics,and wave and sloshing loads were calculated on the basis of potential flow theory and computational fluid dynamics.The influence of different calculation methods for corrosion allowance and sloshing load on the structural responses of aquaculture tanks was analyzed.Through our calculations,we found that the corrosion of aquaculture tanks is different from that of ordinary ships.The corrosion allowance in Rules for the Classification of Sea-going Steel Ships is small,and the influence of the aquaculture environment on corrosion can be ignored.Compared with the method set in the relevant rules,our proposed coupling direct calculation method for the structural response calculation of aquaculture tanks can better combine the specific environment of aquaculture tanks and provide more accurate calculations.