Han River to Wei River Water Diversion Project in Shaanxi Province is an inter-basin water diversion project approved by the State Council in 2005,which is a key hydraulic project in the 12th Five-Year Plan of China.I...Han River to Wei River Water Diversion Project in Shaanxi Province is an inter-basin water diversion project approved by the State Council in 2005,which is a key hydraulic project in the 12th Five-Year Plan of China.It is expected to solve water resources shortage in the Guanzhong area of Shaanxi Province,effectively curb the deterioration of ecological environment in Wei River and reduce environmental geological disasters in the Guanzhong area.It is a strategic project for optimal allocation of water resources by adjusting the distribution of water resources in Shaanxi Province and promoting the economic development of the Guanzhong-Tianshui Economic Zone.Implementation of the project is of great importance to the sustainable economic and social development of the Guanzhong area.The project crosses the Yangtze River and Yellow River basins and passes through the Qinling Mountain.The huge-scale project has a profound historic impact on the economic development in the region.展开更多
Recently, the critical chain study has become a hot issue in the project management research field. The construction of the critical chain with multi-resource constraints is a new research subject. According to the sy...Recently, the critical chain study has become a hot issue in the project management research field. The construction of the critical chain with multi-resource constraints is a new research subject. According to the system analysis theory and project portfolio theory, this paper discusses the creation of project portfolios based on the similarity principle and gives the definition of priority in multi-resource allocation based on quantitative analysis. A model with multi-resource constraints, which can be applied to the critical chain construction of the A-bid section in the South-to-North Water Diversion Project, was proposed. Contrast analysis with the comprehensive treatment construction method and aggressive treatment construction method was carried out. This paper also makes suggestions for further research directions and subjects, which will be useful in improving the theories in relevant research fields.展开更多
In this paper, according to the rule of unbalanced sediment transport and the analysis of field data, different water diversion schemes were theoretically studied, including the erosion and sedimentation trend as well...In this paper, according to the rule of unbalanced sediment transport and the analysis of field data, different water diversion schemes were theoretically studied, including the erosion and sedimentation trend as well as their impacts on the environment of the middle and lower reaches of the Hanjiang River. The results showed that the 95×10 8m 3 water diversion scheme will cause less erosion and water level decrease than the 15×10 8m 3 water diversion scheme. Using a water diversion scheme of 95×10 8m 3, the decrease of water quantity can impact the river hydrodynamic regime substantially and the environments of the middle and lower reaches of the Hanjiang River will be greatly affected. It is therefore necessary to develop new water resources or build projects to meet the need of the environment and the needs for navigation.展开更多
The south to the north project (WDP) on the saltwater intrusion in the Changjiang Estuary is studied by the improved three-dimensionai (3D) numerical model.The net unit width flux in the Changjiang Estuary as well as ...The south to the north project (WDP) on the saltwater intrusion in the Changjiang Estuary is studied by the improved three-dimensionai (3D) numerical model.The net unit width flux in the Changjiang Estuary as well as the sectional salt flux is calculated in the North Branch (NB),the South Branch (SB),the North Channel (NC),the South Channel (SC),the North Passage (NP) and the South Passage (SP),respectively.The net seaward water flux in the SB is reduced,and the net water flux spilling over from the NB to the SB is enhanced after the eastern WDP.Under the mean river discharge condition in the dry season,the net salt flux spilling over from the NB to the SB is increased by 2.09 t/s and 0.52 t/s during the spring and neap tides,respectively,due to the eastern WDP.The saltwater intrusion in the Changjiang Estuary is enhanced by the eastern WDP.Compared with that during the spring tide,the net water diversion ratio during the neap tide in the NC is smaller,and thus the enhancement of the saltwater intrusion by the eastern WDP is smaller in the NC,and larger in the NP and the SP.The tidally averaged surface salinity at the water intakes of the Dongfengxisha Reservoir,the Chenhang Reservoir and the Qingcaosha Reservoir rises both during the spring and neap tides.展开更多
On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtz,e River to Taihu Lake in solving the water problem and establishing a harmonio...On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtz,e River to Taihu Lake in solving the water problem and establishing a harmonious eco-environment in the Taihu Basin is performed. The water quantity and water quality conjunctive dispatching 'decisi"ofi-makifig support system, which ensures flood control, water supply and eco-aimed dispatching, is built by combining the water diversion with flood control dispatching and strengthening water resources monitoring and forecasting. With the practice and effect assessment, measures such as setting the -integrated basin management format, further developing water diversion and improving the hydraulic engineering projects system and water monitoring system are proposed in order to maintain healthy rivers and guarantee the development of the economy and society in the Taihu Basin.展开更多
The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upst...The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upstream of the Yellow River (water- importing area). The long-term hydrologieal data from 14 stream gauging stations in the Western Route area and techniques including the pre-whitening approach, non-parametric test, Bayes, law, variance analysis extrapolation, and Wavelet Analysis are applied to identify the streamflow eharacteristics and trends, streamflow time series cross-correlations, wetness-dryness encountering probability, and periodicities that occurred over the last 50 years. The results show that the water-exporting area, water- importing area, and the streteh downstream of the water-exporting have synehronization in high-low flow relationship, whereas they display non- synchronization in long-term evolution. This corresponds to the complicated and variable climate of the plateau region. There is no obvious increasing or decreasing trend in runoff at any gauging station. The best hydrological eompensation probability for rivers where water is diverted is about 25% to lO%, and those rivers influenced significantly by diversion are the Jinsha and Yalong rivers. Proper planning and design of compensation reservoirs for the water-exporting area and stretch downstream of the water- exporting area can increase the hydrological compensation possibility from water-exporting area to the water-importing area, and reduce the impact on the stretch of river downstream of the water- exporting area.展开更多
The over-exploitation of water resources in the Haihe River Basin (HRB) has now become a serious problem. This is clearly evidenced by the fact that many local rivers and lakes are drying up and the total amount of ...The over-exploitation of water resources in the Haihe River Basin (HRB) has now become a serious problem. This is clearly evidenced by the fact that many local rivers and lakes are drying up and the total amount of over-exploited groundwater has reached over 1000×10^8m^3. It is important to note that the exploitation of water resources in HRB was reasonable before 1979. After 1980, however, over-exploitation happened with an annual average amount of 40×10^8m^3. Both the dry season and rapid economic growth in HRB took place at the same time. Therefore, the over-exploitation of water in HRB was actually the negative result of the conjunction of a continuous dry season and rapid economic growth. So the over-exploitation would not be as serious as it is today if either of the above two stopped. After the first stage of south-to-north water transfer project, the water shortage problem in HRB could be eased for the following reasons: firstly, water transfer project will bring to the Basin 60x108m3 water resources; secondly, a wet season will come back eventually according to natural law of climate variability; finally, its agricultural and industrial use and total water consumption all have decreased from the peak value, so that the groundwater table will raise certainly and ecological water in rivers and lakes that were dried-up will be partly restored. In the future, the main problem of water resources security in HRB will include water pollution, operation risk of the south-to-north water transfer project, groundwater pollution and engineering geological hazards that may be brought by groundwater rise. The proposed countermeasures are as follows: keeping strengthening water demand management, raising water price as well as subsidies for the low- income family and improving other water related policies, preventing and dealing with water pollution seriously and getting fully prepared for the operation of south-to-north water transfer project.展开更多
Strategic Water Transfer Project of Western China will transfer water from the Dadu river, the Yalong river, the Jinsha river, the Lancang river and the Nujiang river to the Daliushu project as head work of main canal...Strategic Water Transfer Project of Western China will transfer water from the Dadu river, the Yalong river, the Jinsha river, the Lancang river and the Nujiang river to the Daliushu project as head work of main canal on the Yellow river. And then,the water will be diverted to Neimongol and Xinjiang Uygur autonomous regions,with transfered annual volume of water 80 billion m\+3. The project possesses great comprehensive benefit. The construction of the project will not only change the appearance of the whole Northwest China, but also open up a wide way for the sustainable development of China in future.展开更多
Zarrineh River is located in the northwest of Iran,providing more than 40%of the total inflow into the Lake Urmia that is one of the largest saltwater lakes on the earth.Lake Urmia is a highly endangered ecosystem on ...Zarrineh River is located in the northwest of Iran,providing more than 40%of the total inflow into the Lake Urmia that is one of the largest saltwater lakes on the earth.Lake Urmia is a highly endangered ecosystem on the brink of desiccation.This paper studied the impacts of climate change on the streamflow of Zarrineh River.The streamflow was simulated and projected for the period 1992-2050 through seven CMIP5(coupled model intercomparison project phase 5)data series(namely,BCC-CSM1-1,BNU-ESM,CSIRO-Mk3-6-0,GFDL-ESM2G,IPSL-CM5A-LR,MIROC-ESM and MIROC-ESM-CHEM)under RCP2.6(RCP,representative concentration pathways)and RCP8.5.The model data series were statistically downscaled and bias corrected using an artificial neural network(ANN)technique and a Gamma based quantile mapping bias correction method.The best model(CSIRO-Mk3-6-0)was chosen by the TOPSIS(technique for order of preference by similarity to ideal solution)method from seven CMIP5 models based on statistical indices.For simulation of streamflow,a rainfall-runoff model,the hydrologiska byrans vattenavdelning(HBV-Light)model,was utilized.Results on hydro-climatological changes in Zarrineh River basin showed that the mean daily precipitation is expected to decrease from 0.94 and 0.96 mm in 2015 to 0.65 and 0.68 mm in 2050 under RCP2.6 and RCP8.5,respectively.In the case of temperature,the numbers change from 12.33℃ and 12.37℃ in 2015 to 14.28℃ and 14.32℃ in 2050.Corresponding to these climate scenarios,this study projected a decrease of the annual streamflow of Zarrineh River by half from 2015 to 2050 as the results of climatic changes will lead to a decrease in the annual streamflow of Zarrineh River from 59.49 m^(3)/s in 2015 to 22.61 and 23.19 m^(3)/s in 2050.The finding is of important meaning for water resources planning purposes,management programs and strategies of the Lake's endangered ecosystem.展开更多
Water diversion projects are an effective measure to mitigate water shortages in water-limited areas.Understanding the risk of such projects increasing concurrent drought between the water intake and receiving regions...Water diversion projects are an effective measure to mitigate water shortages in water-limited areas.Understanding the risk of such projects increasing concurrent drought between the water intake and receiving regions is essential for sustainable water management.This study calculates concurrent drought probability between the water intake and receiving regions of the Hanjiang to Weihe River Water Diversion Project using Standardized Precipitation Index and Copula functions.Results showed an increasing trend in drought probability across both the water intake and receiving regions from 2.67%and 8.38%to 12.47%and 14.18%,respectively,during 1969-2018.The return period of concurrent drought decreased from 111.11 to 13.05 years,indicating larger risk of simultaneous drought between the two regions.Projections from CMIP6 suggested that under the SSP 2-4.5 and 5-8.5 scenarios,concurrent drought probability would increase by 2.40%and 7.72%in 2019-2050 compared to that in 1969-1990,respectively.Although increases in precipitation during 2019-2050 could potentially alleviate drought conditions relative to those during 1991-2018,high precipitation variability adds to the uncertainty about future concurrent drought.These findings provide a basis for better understanding concurrent drought and its impact on water diversion projects in a changing climate,and facilitate the establishment of adaptation countermeasures to ensure sustainable water availability.展开更多
The following article has been retracted due to the fact that it cannot be accepted by the author’s university as a scientific peer-reviewed publication. The Editorial Board takes a very strong respect to the author...The following article has been retracted due to the fact that it cannot be accepted by the author’s university as a scientific peer-reviewed publication. The Editorial Board takes a very strong respect to the author’s situation on this matter. This paper published in World Journal of Engineering and Technology Vol.2 No.3B, September 2014, has been removed from this site.展开更多
文摘Han River to Wei River Water Diversion Project in Shaanxi Province is an inter-basin water diversion project approved by the State Council in 2005,which is a key hydraulic project in the 12th Five-Year Plan of China.It is expected to solve water resources shortage in the Guanzhong area of Shaanxi Province,effectively curb the deterioration of ecological environment in Wei River and reduce environmental geological disasters in the Guanzhong area.It is a strategic project for optimal allocation of water resources by adjusting the distribution of water resources in Shaanxi Province and promoting the economic development of the Guanzhong-Tianshui Economic Zone.Implementation of the project is of great importance to the sustainable economic and social development of the Guanzhong area.The project crosses the Yangtze River and Yellow River basins and passes through the Qinling Mountain.The huge-scale project has a profound historic impact on the economic development in the region.
基金supported by the National Science and Technology Plan (Major Project of the Eleventh Five-Year Plan,Grant No. 2006BAB04A13)the Philosophy and Social Science Fund of the Education Department of Jiangsu Province (Grant No.07SJD630006)+2 种基金the Third Key Discipline (Techno-Economics and Management) of the 211 Projectthe Key Discipline of Jiangsu Province (Engineering and Project Management)the Office of the South-to-North Water Diversion Project Construction Committee under the State Council
文摘Recently, the critical chain study has become a hot issue in the project management research field. The construction of the critical chain with multi-resource constraints is a new research subject. According to the system analysis theory and project portfolio theory, this paper discusses the creation of project portfolios based on the similarity principle and gives the definition of priority in multi-resource allocation based on quantitative analysis. A model with multi-resource constraints, which can be applied to the critical chain construction of the A-bid section in the South-to-North Water Diversion Project, was proposed. Contrast analysis with the comprehensive treatment construction method and aggressive treatment construction method was carried out. This paper also makes suggestions for further research directions and subjects, which will be useful in improving the theories in relevant research fields.
文摘In this paper, according to the rule of unbalanced sediment transport and the analysis of field data, different water diversion schemes were theoretically studied, including the erosion and sedimentation trend as well as their impacts on the environment of the middle and lower reaches of the Hanjiang River. The results showed that the 95×10 8m 3 water diversion scheme will cause less erosion and water level decrease than the 15×10 8m 3 water diversion scheme. Using a water diversion scheme of 95×10 8m 3, the decrease of water quantity can impact the river hydrodynamic regime substantially and the environments of the middle and lower reaches of the Hanjiang River will be greatly affected. It is therefore necessary to develop new water resources or build projects to meet the need of the environment and the needs for navigation.
基金The National Basic Science Research Program of Global Change Research of China under contract No.2010CB951201the Funds for Creative Research Groups of China under contract No. 41021064the National Natural Science Foundation of China under contract No. 40976056
文摘The south to the north project (WDP) on the saltwater intrusion in the Changjiang Estuary is studied by the improved three-dimensionai (3D) numerical model.The net unit width flux in the Changjiang Estuary as well as the sectional salt flux is calculated in the North Branch (NB),the South Branch (SB),the North Channel (NC),the South Channel (SC),the North Passage (NP) and the South Passage (SP),respectively.The net seaward water flux in the SB is reduced,and the net water flux spilling over from the NB to the SB is enhanced after the eastern WDP.Under the mean river discharge condition in the dry season,the net salt flux spilling over from the NB to the SB is increased by 2.09 t/s and 0.52 t/s during the spring and neap tides,respectively,due to the eastern WDP.The saltwater intrusion in the Changjiang Estuary is enhanced by the eastern WDP.Compared with that during the spring tide,the net water diversion ratio during the neap tide in the NC is smaller,and thus the enhancement of the saltwater intrusion by the eastern WDP is smaller in the NC,and larger in the NP and the SP.The tidally averaged surface salinity at the water intakes of the Dongfengxisha Reservoir,the Chenhang Reservoir and the Qingcaosha Reservoir rises both during the spring and neap tides.
基金supported by the Innovation Programmes of the Ministry of Water Resources (Grant No. SCXC2002-09)
文摘On the basis of the Taihu water resources assessment, an analysis of the importance and rationality of the water diversion from the Yangtz,e River to Taihu Lake in solving the water problem and establishing a harmonious eco-environment in the Taihu Basin is performed. The water quantity and water quality conjunctive dispatching 'decisi"ofi-makifig support system, which ensures flood control, water supply and eco-aimed dispatching, is built by combining the water diversion with flood control dispatching and strengthening water resources monitoring and forecasting. With the practice and effect assessment, measures such as setting the -integrated basin management format, further developing water diversion and improving the hydraulic engineering projects system and water monitoring system are proposed in order to maintain healthy rivers and guarantee the development of the economy and society in the Taihu Basin.
基金supported by the China Meteorological Data Sharing Service System,the Bureau of Hydrology,and Water Resources of Sichuan Province,China
文摘The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upstream of the Yellow River (water- importing area). The long-term hydrologieal data from 14 stream gauging stations in the Western Route area and techniques including the pre-whitening approach, non-parametric test, Bayes, law, variance analysis extrapolation, and Wavelet Analysis are applied to identify the streamflow eharacteristics and trends, streamflow time series cross-correlations, wetness-dryness encountering probability, and periodicities that occurred over the last 50 years. The results show that the water-exporting area, water- importing area, and the streteh downstream of the water-exporting have synehronization in high-low flow relationship, whereas they display non- synchronization in long-term evolution. This corresponds to the complicated and variable climate of the plateau region. There is no obvious increasing or decreasing trend in runoff at any gauging station. The best hydrological eompensation probability for rivers where water is diverted is about 25% to lO%, and those rivers influenced significantly by diversion are the Jinsha and Yalong rivers. Proper planning and design of compensation reservoirs for the water-exporting area and stretch downstream of the water- exporting area can increase the hydrological compensation possibility from water-exporting area to the water-importing area, and reduce the impact on the stretch of river downstream of the water- exporting area.
基金supported by the National Natural Sciences Fund of China (40971298)
文摘The over-exploitation of water resources in the Haihe River Basin (HRB) has now become a serious problem. This is clearly evidenced by the fact that many local rivers and lakes are drying up and the total amount of over-exploited groundwater has reached over 1000×10^8m^3. It is important to note that the exploitation of water resources in HRB was reasonable before 1979. After 1980, however, over-exploitation happened with an annual average amount of 40×10^8m^3. Both the dry season and rapid economic growth in HRB took place at the same time. Therefore, the over-exploitation of water in HRB was actually the negative result of the conjunction of a continuous dry season and rapid economic growth. So the over-exploitation would not be as serious as it is today if either of the above two stopped. After the first stage of south-to-north water transfer project, the water shortage problem in HRB could be eased for the following reasons: firstly, water transfer project will bring to the Basin 60x108m3 water resources; secondly, a wet season will come back eventually according to natural law of climate variability; finally, its agricultural and industrial use and total water consumption all have decreased from the peak value, so that the groundwater table will raise certainly and ecological water in rivers and lakes that were dried-up will be partly restored. In the future, the main problem of water resources security in HRB will include water pollution, operation risk of the south-to-north water transfer project, groundwater pollution and engineering geological hazards that may be brought by groundwater rise. The proposed countermeasures are as follows: keeping strengthening water demand management, raising water price as well as subsidies for the low- income family and improving other water related policies, preventing and dealing with water pollution seriously and getting fully prepared for the operation of south-to-north water transfer project.
文摘Strategic Water Transfer Project of Western China will transfer water from the Dadu river, the Yalong river, the Jinsha river, the Lancang river and the Nujiang river to the Daliushu project as head work of main canal on the Yellow river. And then,the water will be diverted to Neimongol and Xinjiang Uygur autonomous regions,with transfered annual volume of water 80 billion m\+3. The project possesses great comprehensive benefit. The construction of the project will not only change the appearance of the whole Northwest China, but also open up a wide way for the sustainable development of China in future.
文摘Zarrineh River is located in the northwest of Iran,providing more than 40%of the total inflow into the Lake Urmia that is one of the largest saltwater lakes on the earth.Lake Urmia is a highly endangered ecosystem on the brink of desiccation.This paper studied the impacts of climate change on the streamflow of Zarrineh River.The streamflow was simulated and projected for the period 1992-2050 through seven CMIP5(coupled model intercomparison project phase 5)data series(namely,BCC-CSM1-1,BNU-ESM,CSIRO-Mk3-6-0,GFDL-ESM2G,IPSL-CM5A-LR,MIROC-ESM and MIROC-ESM-CHEM)under RCP2.6(RCP,representative concentration pathways)and RCP8.5.The model data series were statistically downscaled and bias corrected using an artificial neural network(ANN)technique and a Gamma based quantile mapping bias correction method.The best model(CSIRO-Mk3-6-0)was chosen by the TOPSIS(technique for order of preference by similarity to ideal solution)method from seven CMIP5 models based on statistical indices.For simulation of streamflow,a rainfall-runoff model,the hydrologiska byrans vattenavdelning(HBV-Light)model,was utilized.Results on hydro-climatological changes in Zarrineh River basin showed that the mean daily precipitation is expected to decrease from 0.94 and 0.96 mm in 2015 to 0.65 and 0.68 mm in 2050 under RCP2.6 and RCP8.5,respectively.In the case of temperature,the numbers change from 12.33℃ and 12.37℃ in 2015 to 14.28℃ and 14.32℃ in 2050.Corresponding to these climate scenarios,this study projected a decrease of the annual streamflow of Zarrineh River by half from 2015 to 2050 as the results of climatic changes will lead to a decrease in the annual streamflow of Zarrineh River from 59.49 m^(3)/s in 2015 to 22.61 and 23.19 m^(3)/s in 2050.The finding is of important meaning for water resources planning purposes,management programs and strategies of the Lake's endangered ecosystem.
基金National Natural Science Foundation of China(42171095)National Natural Science Foundation of China(41801333)+1 种基金Natural Science Foundation of Shaanxi Province(2020JQ-417)Social Science Foundation of Shaanxi Province(2020D039)。
文摘Water diversion projects are an effective measure to mitigate water shortages in water-limited areas.Understanding the risk of such projects increasing concurrent drought between the water intake and receiving regions is essential for sustainable water management.This study calculates concurrent drought probability between the water intake and receiving regions of the Hanjiang to Weihe River Water Diversion Project using Standardized Precipitation Index and Copula functions.Results showed an increasing trend in drought probability across both the water intake and receiving regions from 2.67%and 8.38%to 12.47%and 14.18%,respectively,during 1969-2018.The return period of concurrent drought decreased from 111.11 to 13.05 years,indicating larger risk of simultaneous drought between the two regions.Projections from CMIP6 suggested that under the SSP 2-4.5 and 5-8.5 scenarios,concurrent drought probability would increase by 2.40%and 7.72%in 2019-2050 compared to that in 1969-1990,respectively.Although increases in precipitation during 2019-2050 could potentially alleviate drought conditions relative to those during 1991-2018,high precipitation variability adds to the uncertainty about future concurrent drought.These findings provide a basis for better understanding concurrent drought and its impact on water diversion projects in a changing climate,and facilitate the establishment of adaptation countermeasures to ensure sustainable water availability.
文摘The following article has been retracted due to the fact that it cannot be accepted by the author’s university as a scientific peer-reviewed publication. The Editorial Board takes a very strong respect to the author’s situation on this matter. This paper published in World Journal of Engineering and Technology Vol.2 No.3B, September 2014, has been removed from this site.