In this article, the behavior of gas bubbles in tapered fluidized beds is investigated with the use of a two- fluid model incorporating kinetic theory of granular flow. The effects of various parameters such as apex a...In this article, the behavior of gas bubbles in tapered fluidized beds is investigated with the use of a two- fluid model incorporating kinetic theory of granular flow. The effects of various parameters such as apex angle, particle size, and particle density on the size distribution and the rise velocity of gas bubbles were examined. In addition, the simulation results for the bubble fraction and axial velocity of gas bubbles were compared with experimental data reported in the literature and good agreement was observed. As the apex angle was increased, the fraction of gas bubbles with large sizes increased and the fraction of bubbles with small sizes decreased. As the particle size increased, the fraction of gas bubbles with large diameters decreased; however, the fraction of bubbles with medium diameters increased. The obtained results clearly indicate that an increased solid density increased the bubble rise velocity up to a specified height and reduced the velocity at larger heights, in tapered fluidized beds.展开更多
treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental ...treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady- state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m^3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m^3/(m^3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m^3·d), the COD removal efficiency decreased. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.展开更多
In this work,a tapered fluidized bed(TFB)without a distributor for fluidizing carbon nanotube(CNT)was applied for improving the dead zone,blockage,and fracture of distributor,which occurred in actual production.Experi...In this work,a tapered fluidized bed(TFB)without a distributor for fluidizing carbon nanotube(CNT)was applied for improving the dead zone,blockage,and fracture of distributor,which occurred in actual production.Experiments were performed under different superficial gas velocities,static bed heights,CNT agglomerate size,and positions of pressure probe.To obtain multi-perspective and multi-scale understanding of fluidization dynamics of gas–CNT flow in the TFB without a distributor,the standard deviation,skewness,kurtosis,wavelet decompositions and homogeneous index analysis methods were adopted.Some noticeable phenomena were observed.Particle movements including inter-particle,gas–particle and particle–wall dominate dynamic characteristics.The amplitudes of pressure fluctuations of coarse agglomerated multi-walled CNT were more sensitive to the gas velocity than that of fine agglomerated multi-walled CNT.The sensitively of energy contribution of the meso-and macrostructures was that the sensitivity of the measured position was less than the sensitivity of the energy contribution by the changes of particle size,and the sensitivity of the energy contribution by the changes of particle size was less than the energy contribution by the changes of gas velocity.The fluidization quality of coarse agglomerated multi-walled CNT was better than that of fine agglomerated multi-walled CNT,which was verified by the skewness and wavelet analysis.展开更多
It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liq...It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.展开更多
The different carbon nanotube(CNT)particles(^(@)A and^(@)V)were bed materials in the pseudo-2D tapered fluidized bed(TFB)with/without a distributor.A detailed investigation of the motion mechanism of bubbles was carri...The different carbon nanotube(CNT)particles(^(@)A and^(@)V)were bed materials in the pseudo-2D tapered fluidized bed(TFB)with/without a distributor.A detailed investigation of the motion mechanism of bubbles was carried out.The high-speed photography and image analysis techniques were used to study bubble characteristic and mixing behavior in the tapered angle of TFB without a distributor.The fractal analysis method was used to analyze the degree of particles movement.Results showed that an S-shaped motion trajectory of bubbles was captured in the bed of^(@)V particles.The population of observational bubbles in the bed of^(@)V particles was more than that of^(@)A particles,and the bubble size was smaller in the bed of^(@)V particles than that of^(@)A particles.The motion mechanism of bubbles had been shown to be related to bed materials and initial bed height in terms of analysis and comparison of bubble diameter,bubble aspect ratio and bubble shape factor.Importantly,compared to the TFB with a distributor,the TFB without a distributor had been proved to be beneficial to the CNT fluidization according to the study of bubble characteristic and the degree of the particle movement.Additionally,it was found that the mixing behavior of^(@)V particles was better than^(@)A particles in the tapered angle of TFB without a distributor.展开更多
This paper investigated the effect of Gaussian distribution width,average particle diameter,particle loading,and the tapered angle on minimum fluidization velocity(U_(mf))by conducting extensive experiments in tapered...This paper investigated the effect of Gaussian distribution width,average particle diameter,particle loading,and the tapered angle on minimum fluidization velocity(U_(mf))by conducting extensive experiments in tapered fluidized beds.Three powders with Gaussian size distribution and different distribution widths were used in the experiments.An increase in U_(mf)with increasing the average particle diameter,particle loading,and the tapered angle was observed.There was also a nonmonotonic behavior of Umf as the Gaussian distribution width increased.An empirical correlation including dimensionless groups for predicting Umf in tapered beds was developed in which the effect of distribution width was considered.The proposed correlation predictions were in good agreement with the experimental data,with a maximum deviation of 16.5%and average and standard deviations of,respectively,6.4%and 7.4%.The proposed correlation was also compared with three earlier models,and their accuracy was discussed.展开更多
The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. Th...The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. This is a stand of portion of new branch in the magnetically assisted fluidization recently created concerning employment of tapered vessels. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number has been applied to develop scaling relationships of dimensionless groups representing ratios of pressures created by the fluid flow, gravity and the magnetic field over an elementary volume of the fluidized bed. Special attention has been paid on the existing data correlations developed for non-magnetic beds and the links to the new ones especially developed for tapered magnetic counterparts. A special dimensionless variable Xp = (Ar△Dbt)1/3√RgMQ combining Archimedes and Rosensweig numbers has been conceived for porosity correlation. Data correlations have been performed by power-law, exponential decay and asymptotic functions with analysis of their adequacies and accuracies of approximation.展开更多
文摘In this article, the behavior of gas bubbles in tapered fluidized beds is investigated with the use of a two- fluid model incorporating kinetic theory of granular flow. The effects of various parameters such as apex angle, particle size, and particle density on the size distribution and the rise velocity of gas bubbles were examined. In addition, the simulation results for the bubble fraction and axial velocity of gas bubbles were compared with experimental data reported in the literature and good agreement was observed. As the apex angle was increased, the fraction of gas bubbles with large sizes increased and the fraction of bubbles with small sizes decreased. As the particle size increased, the fraction of gas bubbles with large diameters decreased; however, the fraction of bubbles with medium diameters increased. The obtained results clearly indicate that an increased solid density increased the bubble rise velocity up to a specified height and reduced the velocity at larger heights, in tapered fluidized beds.
文摘treatability of synthetic sago wastewater was investigated in a laboratory anaerobic tapered fluidized bed reactor (ATFBR) with a mesoporous granular activated carbon (GAC) as a support material. The experimental protocol was defined to examine the effect of the maximum organic loading rate (OLR), hydraulic retention time (HRT), the efficiency of the reactor and to report on its steady- state performance. The reactor was subjected to a steady-state operation over a range of OLR up to 85.44 kg COD/(m^3·d). The COD removal efficiency was found to be 92% in the reactor while the biogas produced in the digester reached 25.38 m^3/(m^3·d) of the reactor. With the increase of OLR from 83.7 kg COD/(m^3·d), the COD removal efficiency decreased. Also an artificial neural network (ANN) model using multilayer perceptron (MLP) has been developed for a system of two input variable and five output dependent variables. For the training of the input-output data, the experimental values obtained have been used. The output parameters predicted have been found to be much closer to the corresponding experimental ones and the model was validated for 30% of the untrained data. The mean square error (MSE) was found to be only 0.0146.
基金supported by the National Natural Science Foundation of China(No.51676103)Taishan Scholar Project of Shandong Province(No.ts20190937)。
文摘In this work,a tapered fluidized bed(TFB)without a distributor for fluidizing carbon nanotube(CNT)was applied for improving the dead zone,blockage,and fracture of distributor,which occurred in actual production.Experiments were performed under different superficial gas velocities,static bed heights,CNT agglomerate size,and positions of pressure probe.To obtain multi-perspective and multi-scale understanding of fluidization dynamics of gas–CNT flow in the TFB without a distributor,the standard deviation,skewness,kurtosis,wavelet decompositions and homogeneous index analysis methods were adopted.Some noticeable phenomena were observed.Particle movements including inter-particle,gas–particle and particle–wall dominate dynamic characteristics.The amplitudes of pressure fluctuations of coarse agglomerated multi-walled CNT were more sensitive to the gas velocity than that of fine agglomerated multi-walled CNT.The sensitively of energy contribution of the meso-and macrostructures was that the sensitivity of the measured position was less than the sensitivity of the energy contribution by the changes of particle size,and the sensitivity of the energy contribution by the changes of particle size was less than the energy contribution by the changes of gas velocity.The fluidization quality of coarse agglomerated multi-walled CNT was better than that of fine agglomerated multi-walled CNT,which was verified by the skewness and wavelet analysis.
基金Supported by the National Natural Science Foundation of China(No.29576251)
文摘It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.
基金This work is supported by the National Natural Science Foundation of China(51676103)Taishan Scholar Project of Shandong Province(ts20190937).
文摘The different carbon nanotube(CNT)particles(^(@)A and^(@)V)were bed materials in the pseudo-2D tapered fluidized bed(TFB)with/without a distributor.A detailed investigation of the motion mechanism of bubbles was carried out.The high-speed photography and image analysis techniques were used to study bubble characteristic and mixing behavior in the tapered angle of TFB without a distributor.The fractal analysis method was used to analyze the degree of particles movement.Results showed that an S-shaped motion trajectory of bubbles was captured in the bed of^(@)V particles.The population of observational bubbles in the bed of^(@)V particles was more than that of^(@)A particles,and the bubble size was smaller in the bed of^(@)V particles than that of^(@)A particles.The motion mechanism of bubbles had been shown to be related to bed materials and initial bed height in terms of analysis and comparison of bubble diameter,bubble aspect ratio and bubble shape factor.Importantly,compared to the TFB with a distributor,the TFB without a distributor had been proved to be beneficial to the CNT fluidization according to the study of bubble characteristic and the degree of the particle movement.Additionally,it was found that the mixing behavior of^(@)V particles was better than^(@)A particles in the tapered angle of TFB without a distributor.
文摘This paper investigated the effect of Gaussian distribution width,average particle diameter,particle loading,and the tapered angle on minimum fluidization velocity(U_(mf))by conducting extensive experiments in tapered fluidized beds.Three powders with Gaussian size distribution and different distribution widths were used in the experiments.An increase in U_(mf)with increasing the average particle diameter,particle loading,and the tapered angle was observed.There was also a nonmonotonic behavior of Umf as the Gaussian distribution width increased.An empirical correlation including dimensionless groups for predicting Umf in tapered beds was developed in which the effect of distribution width was considered.The proposed correlation predictions were in good agreement with the experimental data,with a maximum deviation of 16.5%and average and standard deviations of,respectively,6.4%and 7.4%.The proposed correlation was also compared with three earlier models,and their accuracy was discussed.
文摘The article presents an effort to create dimensionless scaling correlations of the overall bed porosity in the case of magnetically assisted fluidization in a tapered vessel with external transverse magnetic field. This is a stand of portion of new branch in the magnetically assisted fluidization recently created concerning employment of tapered vessels. Dimensional analysis based on "pressure transform" of the initial set of variables and involving the magnetic granular Bond number has been applied to develop scaling relationships of dimensionless groups representing ratios of pressures created by the fluid flow, gravity and the magnetic field over an elementary volume of the fluidized bed. Special attention has been paid on the existing data correlations developed for non-magnetic beds and the links to the new ones especially developed for tapered magnetic counterparts. A special dimensionless variable Xp = (Ar△Dbt)1/3√RgMQ combining Archimedes and Rosensweig numbers has been conceived for porosity correlation. Data correlations have been performed by power-law, exponential decay and asymptotic functions with analysis of their adequacies and accuracies of approximation.