Lead-free antiferroelectric ceramics with high energy storage performance show great potential in pulsed power capacitors.However,poor breakdown strength and antiferroelectric stability are the two main drawbacks that...Lead-free antiferroelectric ceramics with high energy storage performance show great potential in pulsed power capacitors.However,poor breakdown strength and antiferroelectric stability are the two main drawbacks that limit the energy storage performance of antiferroelectric ceramics.Herein,highquality(Ag_(1-x)Na_(x))(Nb_(1-x)Ta_(x))O_(3)ceramics were prepared by the tape casting process.The breakdown strength was greatly improved as a result of the high density and fine grains,while the antiferroelectric stability was enhanced owning to the M2 phase.Benefiting from the synergistic improvement in breakdown strength and antiferroelectric stability,(Ag_(0.80)Na_(0.20))(Nb_(0.80)Ta_(0.20))O_(3)ceramic reveals a benign energy storage performance of W_(rec)=5.8 J/cm^(3)and h=61.7%with good temperature stability,frequency stability and cycling reliability.It is also found that the high applied electric field can promote the M2-M3 phase transition,which may provide ideas to improve the thermal stability of the energy storage performance in AgNbO_(3)-based ceramics.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.51802068 and No.52073144)the Natural Science Foundation of Hebei Province,China(No.E2021201044)+1 种基金the Natural Science Foundation of Jiangsu Province,China(No.BK20201301)the State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(No.KF202114).
文摘Lead-free antiferroelectric ceramics with high energy storage performance show great potential in pulsed power capacitors.However,poor breakdown strength and antiferroelectric stability are the two main drawbacks that limit the energy storage performance of antiferroelectric ceramics.Herein,highquality(Ag_(1-x)Na_(x))(Nb_(1-x)Ta_(x))O_(3)ceramics were prepared by the tape casting process.The breakdown strength was greatly improved as a result of the high density and fine grains,while the antiferroelectric stability was enhanced owning to the M2 phase.Benefiting from the synergistic improvement in breakdown strength and antiferroelectric stability,(Ag_(0.80)Na_(0.20))(Nb_(0.80)Ta_(0.20))O_(3)ceramic reveals a benign energy storage performance of W_(rec)=5.8 J/cm^(3)and h=61.7%with good temperature stability,frequency stability and cycling reliability.It is also found that the high applied electric field can promote the M2-M3 phase transition,which may provide ideas to improve the thermal stability of the energy storage performance in AgNbO_(3)-based ceramics.