In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that cons...In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that consists of many types of sonar but with one own-ship, and that different target parameter measurements can be obtained simultaneously. For the analysis 3 data measurements, passive bearing, elevation and multipath time-delay, are used, which are divided into two groups: a group with estimates of two preliminary target parameter obtained by dealing with each group measurement independently, and a group where correlated estimates are sent to a fusion center where the correlation between two data groups are considered so that the passive underwater TMA is realized. Simulation results show that curves of parameter estimation errors obtained by using the data fusion have fast convergence and the estimation accuracy is noticeably improved. The TMA algorithm presented is verified and is of practical significance because it is easy to be realized in one ship.展开更多
In this paper, the problem of underwater passive target motion analysis (TMA) in three dimensions is discussed using the measurements of passive bearings and elevation and frequency on the condition that acoustic sour...In this paper, the problem of underwater passive target motion analysis (TMA) in three dimensions is discussed using the measurements of passive bearings and elevation and frequency on the condition that acoustic source and observer are in different horizontal planes. Simulation results with both of the PLE (pseudo-linear estimation) and MLE (Maximum likelihood estimation) show that the TMA method is effective in oceanic environment. Its error covariance curves tend to its Cramer-Rao lower bounds.展开更多
To solve the problem of insufficient ability when detecting the high-speed moving target with passive millimeter wave technology, a direct-detection passive millimeter wave detecting system using the monolithic microw...To solve the problem of insufficient ability when detecting the high-speed moving target with passive millimeter wave technology, a direct-detection passive millimeter wave detecting system using the monolithic microwave integrated cir- cuit (MMIC) millimeter wave radiometer is built, and the measured data are obtained by experiment under different condi- tions. Based on feature analysis of testing signals, it points out that the peak of the first pulse and interval of two peak pulses are valid features which can reflect the motion characteristic of target. A method to calculate the moving speed of target is put forward. The calculating results indicate that the proposed method has enough accuracy and is feasible to determine the parameters of the moving target using for passive millimeter wave system.展开更多
To measure the trajectory of an underwater vertical moving target(UVMT) in transient motion with high accuracy and high frame rate,an acoustic localization model using seabed stations with an acoustic beacon was prese...To measure the trajectory of an underwater vertical moving target(UVMT) in transient motion with high accuracy and high frame rate,an acoustic localization model using seabed stations with an acoustic beacon was presented.A solution algorithm based on the Gauss-Newton method was derived,which was shown to satisfy the local linear convergence.Accuracy analysis of the numerical simulation indicated that the station location,sound velocity,and signal time delay estimation errors were propagated to location parameters through measurement ranges,and the main affecting factors included the station geometry,target relative location,and acoustic conditions.Vertical accuracy was improved using a supplemental surface station coupled with the seabed stations.Detailed characteristics were indicated by accuracy distribution from the full test sea area.A 14-station array composed of 13 seabed stations and 1 surface station in a test sea of 1 km x 1 km and 60 m in depth demonstrated that the average root mean square errors(RMSEs) in the x,y,and z directions were 0.30,1.47,and0.34 m,respectively,in the vertical range of 35-60 m.This work provided a technical approach for UVMT localization,which would be useful for designing related measurement systems.展开更多
The method for Bearings-Only Target Motion Analysis (BO-TMA) based on bearing measurements fusion of two arrays is studied. The algorithms of pseudolinear processing, extended Kalman filter and maximum likelihood est...The method for Bearings-Only Target Motion Analysis (BO-TMA) based on bearing measurements fusion of two arrays is studied. The algorithms of pseudolinear processing, extended Kalman filter and maximum likelihood estimation are presented. The results of simulation experiments show that the BO-TMA method based on association of multiple arrays not only makes contributions towards eliminating maneuvers needed by bearings-only TMA based on single array,but also improves the stabilization and global convergence for varied estimation algorithms.展开更多
文摘In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that consists of many types of sonar but with one own-ship, and that different target parameter measurements can be obtained simultaneously. For the analysis 3 data measurements, passive bearing, elevation and multipath time-delay, are used, which are divided into two groups: a group with estimates of two preliminary target parameter obtained by dealing with each group measurement independently, and a group where correlated estimates are sent to a fusion center where the correlation between two data groups are considered so that the passive underwater TMA is realized. Simulation results show that curves of parameter estimation errors obtained by using the data fusion have fast convergence and the estimation accuracy is noticeably improved. The TMA algorithm presented is verified and is of practical significance because it is easy to be realized in one ship.
文摘In this paper, the problem of underwater passive target motion analysis (TMA) in three dimensions is discussed using the measurements of passive bearings and elevation and frequency on the condition that acoustic source and observer are in different horizontal planes. Simulation results with both of the PLE (pseudo-linear estimation) and MLE (Maximum likelihood estimation) show that the TMA method is effective in oceanic environment. Its error covariance curves tend to its Cramer-Rao lower bounds.
文摘To solve the problem of insufficient ability when detecting the high-speed moving target with passive millimeter wave technology, a direct-detection passive millimeter wave detecting system using the monolithic microwave integrated cir- cuit (MMIC) millimeter wave radiometer is built, and the measured data are obtained by experiment under different condi- tions. Based on feature analysis of testing signals, it points out that the peak of the first pulse and interval of two peak pulses are valid features which can reflect the motion characteristic of target. A method to calculate the moving speed of target is put forward. The calculating results indicate that the proposed method has enough accuracy and is feasible to determine the parameters of the moving target using for passive millimeter wave system.
基金supported by the National Natural Science Foundation of China(61701504)
文摘To measure the trajectory of an underwater vertical moving target(UVMT) in transient motion with high accuracy and high frame rate,an acoustic localization model using seabed stations with an acoustic beacon was presented.A solution algorithm based on the Gauss-Newton method was derived,which was shown to satisfy the local linear convergence.Accuracy analysis of the numerical simulation indicated that the station location,sound velocity,and signal time delay estimation errors were propagated to location parameters through measurement ranges,and the main affecting factors included the station geometry,target relative location,and acoustic conditions.Vertical accuracy was improved using a supplemental surface station coupled with the seabed stations.Detailed characteristics were indicated by accuracy distribution from the full test sea area.A 14-station array composed of 13 seabed stations and 1 surface station in a test sea of 1 km x 1 km and 60 m in depth demonstrated that the average root mean square errors(RMSEs) in the x,y,and z directions were 0.30,1.47,and0.34 m,respectively,in the vertical range of 35-60 m.This work provided a technical approach for UVMT localization,which would be useful for designing related measurement systems.
文摘运动目标传统检测方法只考虑图像的亮度或纹理等某一种特性,受特异值影响较大,对噪声比较敏感,鲁棒性也不够好,而且背景恢复精度不高。针对以上局限性,提出一种融合结构相似度(structural similarity,SSIM)全参考模型和鲁棒主成分分析(robust principal component analysis,RPCA)的运动目标检测方法。此方法综合考虑图像的亮度、对比度和结构三种特性,不采用传统的背景减除法,而是把图像像素点的结构相似度作为度量来实现运动对象与背景的分离。实验结果表明,此方法准确率可达0.95,且F度量较传统运动目标检测算法平均提升0.15,总体上比传统方法更具优势。
文摘The method for Bearings-Only Target Motion Analysis (BO-TMA) based on bearing measurements fusion of two arrays is studied. The algorithms of pseudolinear processing, extended Kalman filter and maximum likelihood estimation are presented. The results of simulation experiments show that the BO-TMA method based on association of multiple arrays not only makes contributions towards eliminating maneuvers needed by bearings-only TMA based on single array,but also improves the stabilization and global convergence for varied estimation algorithms.