Hepatocellular carcinoma(HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorablesystemic side...Hepatocellular carcinoma(HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorablesystemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs(si RNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and si RNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited sideeffects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is overexpressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and nonviral si RNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic si RNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein, ganglioside GM1 cell surface ligand, epidermal growth factor receptor receptors, monoclonal antibodies, retinoic acid receptors, integrin receptors targeted by Arg-Gly-Asp peptide, folate, and transferrin receptors are the most widely studied cell surface receptors which are used for the site specific delivery of drugs and si RNA-based therapeutics in HCC and discussed in detail in this article.展开更多
Tumor necrosis factor-alpha(TNF-α) has been found to be centrally involved in the development of ischemia-reperfusion injury(IRI)-induced inflammation and apoptosis. Knockdown of TNF-α gene using small interferi...Tumor necrosis factor-alpha(TNF-α) has been found to be centrally involved in the development of ischemia-reperfusion injury(IRI)-induced inflammation and apoptosis. Knockdown of TNF-α gene using small interfering RNA(si RNA) may protect renal IRI. Renal IRI was induced in mice by clamping the left renal pedicle for 25 or 35 min. TNF-α si RNA was administered intravenously to silence the expression of TNF-α. The therapeutic effects of si RNA were evaluated in terms of renal function, histological examination, and overall survival following lethal IRI. A single systemic injection of TNF-α si RNA resulted in significant knockdown of TNF-α expression in ischemia-reperfusion injured kidney. In comparison with control mice, levels of BUN and serum creatinine were significantly reduced in mice treated with si RNA. Pathological examination demonstrated that tissue damage caused by IRI was markedly reduced as a result of TNF-α si RNA treatment. Furthermore, survival experiments showed that nearly 90% of control mice died from lethal IRI, whereas more than 50% of si RNApretreated mice survived until the end of the eight-day observation period. We have demonstrated for the first time that silencing TNF-α by specific si RNA can significantly reduce renal IRI and protect mice against lethal kidney ischemia, highlighting the potential for si RNA-based clinical therapy.展开更多
Inversions are DNA rearrangements that are essential for plant gene evolution and adaptation to environmental changes. We demonstrate the creation of targeted inversions and previously reported targeted deletion mutat...Inversions are DNA rearrangements that are essential for plant gene evolution and adaptation to environmental changes. We demonstrate the creation of targeted inversions and previously reported targeted deletion mutations via delivery of a pair of RNA-guided endonucleases(RGENs) of CRISPR/Cas9. The efficiencies of the targeted inversions were2.6% and 2.2% in the Arabidopsis FLOWERING TIME(At FT) and TERMINAL FLOWER 1(At TFL1)loci, respectively. Thus, we successfully established an approach that can potentially be used to introduce targeted DNA inversions of interest for functional studies and crop improvement.展开更多
Multiple sclerosis is an autoimmune neurodegenerative disease of the central nervous system characterized by pronounced inflammatory infiltrates entering the brain,spinal cord and optic nerve leading to demyelination....Multiple sclerosis is an autoimmune neurodegenerative disease of the central nervous system characterized by pronounced inflammatory infiltrates entering the brain,spinal cord and optic nerve leading to demyelination.Focal demyelination is associated with relapsing-remitting multiple sclerosis,while progressive forms of the disease show axonal degeneration and neuronal loss.The tests currently used in the clinical diagnosis and management of multiple sclerosis have limitations due to specificity and sensitivity.MicroRNAs(miRNAs)are dysregulated in many diseases and disorders including demyelinating and neuroinflammatory diseases.A review of recent studies with the experimental autoimmune encephalomyelitis animal model(mostly female mice 6–12 weeks of age)has confirmed miRNAs as biomarkers of experimental autoimmune encephalomyelitis disease and importantly at the pre-onset(asymptomatic)stage when assessed in blood plasma and urine exosomes,and spinal cord tissue.The expression of certain miRNAs was also dysregulated at the onset and peak of disease in blood plasma and urine exosomes,brain and spinal cord tissue,and at the post-peak(chronic)stage of experimental autoimmune encephalomyelitis disease in spinal cord tissue.Therapies using miRNA mimics or inhibitors were found to delay the induction and alleviate the severity of experimental autoimmune encephalomyelitis disease.Interestingly,experimental autoimmune encephalomyelitis disease severity was reduced by overexpression of miR-146a,miR-23b,miR-497,miR-26a,and miR-20b,or by suppression of miR-182,miR-181c,miR-223,miR-155,and miR-873.Further studies are warranted on determining more fully miRNA profiles in blood plasma and urine exosomes of experimental autoimmune encephalomyelitis animals since they could serve as biomarkers of asymptomatic multiple sclerosis and disease course.Additionally,studies should be performed with male mice of a similar age,and with aged male and female mice.展开更多
文摘Hepatocellular carcinoma(HCC) is the 5th most common malignancy which is responsible for more than half million annual mortalities; also, it is the third leading cause of cancer related death. Unfavorablesystemic side-effects of chemotherapeutic agents and susceptibility to the degradation of small interfering RNAs(si RNAs), which can knock down a specific gene involved in the disease, have hampered their clinical application. So, it could be beneficial to develop an efficient carrier for the stabilization and specific delivery of drugs and si RNA to cells. Targeted nanoparticles have gained considerable attention as an efficient drug and gene delivery system, which is due to their capability in achieving the highest accumulation of cytotoxic agents in tumor tissue, modifiable drug pharmacokinetic- and bio-distribution, improved effectiveness of treatment, and limited sideeffects. Recent studies have shed more light on the advantages of novel drug loaded carrier systems vs free drugs. Most of the animal studies have reported improvement in treatment efficacy and survival rate using novel carrier systems. Targeted delivery may be achieved passively or actively. In passive targeting, no ligand as homing device is used, while targeting is achieved by incorporating the therapeutic agent into a macromolecule or nanoparticle that passively reaches the target organ. However, in active targeting, the therapeutic agent or carrier system is conjugated to a tissue or cell-specific receptor which is overexpressed in a special malignancy using a ligand called a homing device. This review covers a broad spectrum of targeted nanoparticles as therapeutic and nonviral si RNA delivery systems, which are developed for enhanced cellular uptake and targeted gene silencing in vitro and in vivo and their characteristics and opportunities for the clinical applications of drugs and therapeutic si RNA are discussed in this article. Asialoglycoprotein receptors, low-density lipoprotein, ganglioside GM1 cell surface ligand, epidermal growth factor receptor receptors, monoclonal antibodies, retinoic acid receptors, integrin receptors targeted by Arg-Gly-Asp peptide, folate, and transferrin receptors are the most widely studied cell surface receptors which are used for the site specific delivery of drugs and si RNA-based therapeutics in HCC and discussed in detail in this article.
文摘Tumor necrosis factor-alpha(TNF-α) has been found to be centrally involved in the development of ischemia-reperfusion injury(IRI)-induced inflammation and apoptosis. Knockdown of TNF-α gene using small interfering RNA(si RNA) may protect renal IRI. Renal IRI was induced in mice by clamping the left renal pedicle for 25 or 35 min. TNF-α si RNA was administered intravenously to silence the expression of TNF-α. The therapeutic effects of si RNA were evaluated in terms of renal function, histological examination, and overall survival following lethal IRI. A single systemic injection of TNF-α si RNA resulted in significant knockdown of TNF-α expression in ischemia-reperfusion injured kidney. In comparison with control mice, levels of BUN and serum creatinine were significantly reduced in mice treated with si RNA. Pathological examination demonstrated that tissue damage caused by IRI was markedly reduced as a result of TNF-α si RNA treatment. Furthermore, survival experiments showed that nearly 90% of control mice died from lethal IRI, whereas more than 50% of si RNApretreated mice survived until the end of the eight-day observation period. We have demonstrated for the first time that silencing TNF-α by specific si RNA can significantly reduce renal IRI and protect mice against lethal kidney ischemia, highlighting the potential for si RNA-based clinical therapy.
基金financially supported by the National Natural Science Foundation of China(No.31361140364)the National Major Project for Developing New GM Crops(No.2016ZX080009-001)the Agricultural Science and Technology Innovation Program(ASTIP)of CAAS to Chuanxiao Xie
文摘Inversions are DNA rearrangements that are essential for plant gene evolution and adaptation to environmental changes. We demonstrate the creation of targeted inversions and previously reported targeted deletion mutations via delivery of a pair of RNA-guided endonucleases(RGENs) of CRISPR/Cas9. The efficiencies of the targeted inversions were2.6% and 2.2% in the Arabidopsis FLOWERING TIME(At FT) and TERMINAL FLOWER 1(At TFL1)loci, respectively. Thus, we successfully established an approach that can potentially be used to introduce targeted DNA inversions of interest for functional studies and crop improvement.
文摘Multiple sclerosis is an autoimmune neurodegenerative disease of the central nervous system characterized by pronounced inflammatory infiltrates entering the brain,spinal cord and optic nerve leading to demyelination.Focal demyelination is associated with relapsing-remitting multiple sclerosis,while progressive forms of the disease show axonal degeneration and neuronal loss.The tests currently used in the clinical diagnosis and management of multiple sclerosis have limitations due to specificity and sensitivity.MicroRNAs(miRNAs)are dysregulated in many diseases and disorders including demyelinating and neuroinflammatory diseases.A review of recent studies with the experimental autoimmune encephalomyelitis animal model(mostly female mice 6–12 weeks of age)has confirmed miRNAs as biomarkers of experimental autoimmune encephalomyelitis disease and importantly at the pre-onset(asymptomatic)stage when assessed in blood plasma and urine exosomes,and spinal cord tissue.The expression of certain miRNAs was also dysregulated at the onset and peak of disease in blood plasma and urine exosomes,brain and spinal cord tissue,and at the post-peak(chronic)stage of experimental autoimmune encephalomyelitis disease in spinal cord tissue.Therapies using miRNA mimics or inhibitors were found to delay the induction and alleviate the severity of experimental autoimmune encephalomyelitis disease.Interestingly,experimental autoimmune encephalomyelitis disease severity was reduced by overexpression of miR-146a,miR-23b,miR-497,miR-26a,and miR-20b,or by suppression of miR-182,miR-181c,miR-223,miR-155,and miR-873.Further studies are warranted on determining more fully miRNA profiles in blood plasma and urine exosomes of experimental autoimmune encephalomyelitis animals since they could serve as biomarkers of asymptomatic multiple sclerosis and disease course.Additionally,studies should be performed with male mice of a similar age,and with aged male and female mice.