This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image...This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image.Four new clutter metrics based on image quality assessment are introduced,among which the Haar wavelet-based perceptual similarity index,known as HaarPSI,provides the best target acquisition prediction results.It is shown that the similarity between the target and the background at the boundary between visually lossless and visually lossy compression does not change significantly compared to the case when an uncompressed image is used.In future work,through subjective tests,it is necessary to check whether this presence of compression at the threshold of just noticeable differences will affect the human target acquisition performance.Similarity values are compared with the results of subjective tests of the well-known target Search_2 database,where the degree of agreement between objective and subjective scores,measured through linear correlation,reached a value of 90%.展开更多
This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission...This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission area, the targets can intermittently obtain the position information of the UAVs from sensing devices, and take appropriate actions to increase the distance between themselves and the UAVs. Aiming at this problem, an environment model is established using the search map, and the updating method of the search map is extended by considering the sensing capabilities of the moving targets. A multi-UAV search path planning optimization model based on the model predictive control (MPC) method is constructed, and a hybrid particle swarm optimization algorithm with a crossover operator is designed to solve the model. Simulation results show that the proposed method can effectively improve the cooperative search efficiency and can find more targets per unit time compared with the coverage search method and the random search method.展开更多
Collaborative coverage for target search using a group of unmanned aerial vehicles(UAVs)has received increasing attention in recent years.However,the design of distributed control strategy and coordination mechanisms ...Collaborative coverage for target search using a group of unmanned aerial vehicles(UAVs)has received increasing attention in recent years.However,the design of distributed control strategy and coordination mechanisms remains a challenge.This paper presents a distributed and online heuristic strategy to solve the problem of multi-UAV collaborative coverage.As a basis,each UAV maintains a probability grid map in the form of a locally stored matrix,without shared memory.Then we design two evaluation functions and related technical strategies to enable UAVs to make state transfer or area transfer decisions in an online self-organizing way.The simulation results show that the algorithm integrates geometric features such as parallel search and internal spiral search,and is not interfered by factors such as sudden failure of UAVs,changes in detection range,and target movement.Compared with other commonly used methods for target search,our strategy has high search e±ciency,good robustness,and fault tolerance.展开更多
The current Grover quantum searching algorithm cannot identify the difference in importance of the search targets when it is applied to an unsorted quantum database, and the probability for each search target is equal...The current Grover quantum searching algorithm cannot identify the difference in importance of the search targets when it is applied to an unsorted quantum database, and the probability for each search target is equal. To solve this problem, a Grover searching algorithm based on weighted targets is proposed. First, each target is endowed a weight coefficient according to its importance. Applying these different weight coefficients, the targets are represented as quantum superposition states. Second, the novel Grover searching algorithm based on the quantum superposition of the weighted targets is constructed. Using this algorithm, the probability of getting each target can be approximated to the corresponding weight coefficient, which shows the flexibility of this algorithm. Finally, the validity of the algorithm is proved by a simple searching example.展开更多
Searching for maritime moving targets using satellites is an attracting but rather difficult problem due to the satellites' orbits and discontinuous visible time windows.From a long term cyclic view,a non-myopic m...Searching for maritime moving targets using satellites is an attracting but rather difficult problem due to the satellites' orbits and discontinuous visible time windows.From a long term cyclic view,a non-myopic method based on reinforcement learning(RL)for multi-pass multi-targets searching was proposed.It learnt system behaviors step by step from each observation which resulted in a dynamic progressive way.Then it decided and adjusted optimal actions in each observation opportunity.System states were indicated by expected information gain.Neural networks algorithm was used to approximate parameters of control policy.Simulation results show that our approach with sufficient training performs significantly better than other myopic approaches which make local optimal decisions for each individual observation opportunity.展开更多
Suppose that a moving target moves randomly between two sites and its movement is modeled by a homogeneous Markov chain. We consider three classical problems: (1) what kind of strategies are valid? (2) what stra...Suppose that a moving target moves randomly between two sites and its movement is modeled by a homogeneous Markov chain. We consider three classical problems: (1) what kind of strategies are valid? (2) what strategy is the optimal? (3) what is the infimum of expected numbers of looks needed to detect the target? Problem (3) is thoroughly solved, and some partial solutions to problems (1) and (2) are achieved.展开更多
The distribution function of the target moving in constant velocity and linear course and its meeting condition to the searcher are analyzed.Another proof method for spiral search pattern is presented and the mathemat...The distribution function of the target moving in constant velocity and linear course and its meeting condition to the searcher are analyzed.Another proof method for spiral search pattern is presented and the mathematic model of the target possible position is established when performing the linear search.Base on them,the wrong idea about the spiral search pattern can be展开更多
In this paper, we compute the non-detection probability of a randomly moving target by a stationary or moving searcher in a square search region. We find that when the searcher is stationary, the decay rate of the non...In this paper, we compute the non-detection probability of a randomly moving target by a stationary or moving searcher in a square search region. We find that when the searcher is stationary, the decay rate of the non-detection probability achieves the maximum value when the searcher is fixed at the center of the square search region;when both the searcher and the target diffuse with significant diffusion coefficients, the decay rate of the non-detection probability only depends on the sum of the diffusion coefficients of the target and searcher. When the searcher moves along prescribed deterministic tracks, our study shows that the fastest decay of the non-detection probability is achieved when the searcher scans horizontally and vertically.展开更多
In order to analyze the sources of merger and acquisition(M & A)information,and the relationship between the M & A information and the M & A corporation management bureau,the searching and evaluation proce...In order to analyze the sources of merger and acquisition(M & A)information,and the relationship between the M & A information and the M & A corporation management bureau,the searching and evaluation procedure of M & A target was discussed.The standard modes and procedures of finding the sources of the M & A target,examination of the M & A information,depicting on the future of M & A,and evaluation of the M & A target,were brought forward.展开更多
We consider the problem of searching for a target that moves between a hiding area and an operating area over multiple fixed routes. The search is carried out with one or more cookie-cutter sensors, which can detect t...We consider the problem of searching for a target that moves between a hiding area and an operating area over multiple fixed routes. The search is carried out with one or more cookie-cutter sensors, which can detect the target instantly once the target comes within the detection radius of the sensor. In the hiding area, the target is shielded from being detected. The residence times of the target, respectively, in the hiding area and in the operating area, are exponentially distributed. These dwell times are mathematically described by Markov transition rates. The decision of which route the target will take on each travel to and back from the operating area is governed by a probability distribution. We study the mathematical formulation of this search problem and analytically solve for the mean time to detection. Based on the mean time to capture, we evaluate the performance of placing the searcher(s) to monitor various travel route(s) or to scan the operating area. The optimal search design is the one that minimizes the mean time to detection. We find that in many situations the optimal search design is not the one suggested by the straightforward intuition. Our analytical results can provide operational guidances to homeland security, military, and law enforcement applications.展开更多
For the unsorted database quantum search with the unknown fraction λ of target items, there are mainly two kinds of methods, i.e., fixed-point and trail-and-error.(i) In terms of the fixed-point method, Yoder et al. ...For the unsorted database quantum search with the unknown fraction λ of target items, there are mainly two kinds of methods, i.e., fixed-point and trail-and-error.(i) In terms of the fixed-point method, Yoder et al. [Phys. Rev. Lett.113 210501(2014)] claimed that the quadratic speedup over classical algorithms has been achieved. However, in this paper, we point out that this is not the case, because the query complexity of Yoder’s algorithm is actually in O(1/λ01/2)rather than O(1/λ1/2), where λ0 is a known lower bound of λ.(ii) In terms of the trail-and-error method, currently the algorithm without randomness has to take more than 1 times queries or iterations than the algorithm with randomly selected parameters. For the above problems, we provide the first hybrid quantum search algorithm based on the fixed-point and trail-and-error methods, where the matched multiphase Grover operations are trialed multiple times and the number of iterations increases exponentially along with the number of trials. The upper bound of expected queries as well as the optimal parameters are derived. Compared with Yoder’s algorithm, the query complexity of our algorithm indeed achieves the optimal scaling in λ for quantum search, which reconfirms the practicality of the fixed-point method. In addition, our algorithm also does not contain randomness, and compared with the existing deterministic algorithm, the query complexity can be reduced by about 1/3. Our work provides a new idea for the research on fixed-point and trial-and-error quantum search.展开更多
文摘This paper presents an investigation on the effect of JPEG compression on the similarity between the target image and the background,where the similarity is further used to determine the degree of clutter in the image.Four new clutter metrics based on image quality assessment are introduced,among which the Haar wavelet-based perceptual similarity index,known as HaarPSI,provides the best target acquisition prediction results.It is shown that the similarity between the target and the background at the boundary between visually lossless and visually lossy compression does not change significantly compared to the case when an uncompressed image is used.In future work,through subjective tests,it is necessary to check whether this presence of compression at the threshold of just noticeable differences will affect the human target acquisition performance.Similarity values are compared with the results of subjective tests of the well-known target Search_2 database,where the degree of agreement between objective and subjective scores,measured through linear correlation,reached a value of 90%.
基金supported by the National Natural Science Foundation of China(7140104871671059)the National Natural Science Funds of China for Innovative Research Groups(71521001)
文摘This paper studies the problem of using multiple unmanned air vehicles (UAVs) to search for moving targets with sensing capabilities. When multiple UAVs (multi-UAV) search for a number of moving targets in the mission area, the targets can intermittently obtain the position information of the UAVs from sensing devices, and take appropriate actions to increase the distance between themselves and the UAVs. Aiming at this problem, an environment model is established using the search map, and the updating method of the search map is extended by considering the sensing capabilities of the moving targets. A multi-UAV search path planning optimization model based on the model predictive control (MPC) method is constructed, and a hybrid particle swarm optimization algorithm with a crossover operator is designed to solve the model. Simulation results show that the proposed method can effectively improve the cooperative search efficiency and can find more targets per unit time compared with the coverage search method and the random search method.
基金This study was supported by the Science and Technology Innovation Foundation of China(Grant No.18-163-11).
文摘Collaborative coverage for target search using a group of unmanned aerial vehicles(UAVs)has received increasing attention in recent years.However,the design of distributed control strategy and coordination mechanisms remains a challenge.This paper presents a distributed and online heuristic strategy to solve the problem of multi-UAV collaborative coverage.As a basis,each UAV maintains a probability grid map in the form of a locally stored matrix,without shared memory.Then we design two evaluation functions and related technical strategies to enable UAVs to make state transfer or area transfer decisions in an online self-organizing way.The simulation results show that the algorithm integrates geometric features such as parallel search and internal spiral search,and is not interfered by factors such as sudden failure of UAVs,changes in detection range,and target movement.Compared with other commonly used methods for target search,our strategy has high search e±ciency,good robustness,and fault tolerance.
基金the National Natural Science Foundation of China (60773065).
文摘The current Grover quantum searching algorithm cannot identify the difference in importance of the search targets when it is applied to an unsorted quantum database, and the probability for each search target is equal. To solve this problem, a Grover searching algorithm based on weighted targets is proposed. First, each target is endowed a weight coefficient according to its importance. Applying these different weight coefficients, the targets are represented as quantum superposition states. Second, the novel Grover searching algorithm based on the quantum superposition of the weighted targets is constructed. Using this algorithm, the probability of getting each target can be approximated to the corresponding weight coefficient, which shows the flexibility of this algorithm. Finally, the validity of the algorithm is proved by a simple searching example.
基金National Natural Science Foundation of China(No.61203180)
文摘Searching for maritime moving targets using satellites is an attracting but rather difficult problem due to the satellites' orbits and discontinuous visible time windows.From a long term cyclic view,a non-myopic method based on reinforcement learning(RL)for multi-pass multi-targets searching was proposed.It learnt system behaviors step by step from each observation which resulted in a dynamic progressive way.Then it decided and adjusted optimal actions in each observation opportunity.System states were indicated by expected information gain.Neural networks algorithm was used to approximate parameters of control policy.Simulation results show that our approach with sufficient training performs significantly better than other myopic approaches which make local optimal decisions for each individual observation opportunity.
文摘Suppose that a moving target moves randomly between two sites and its movement is modeled by a homogeneous Markov chain. We consider three classical problems: (1) what kind of strategies are valid? (2) what strategy is the optimal? (3) what is the infimum of expected numbers of looks needed to detect the target? Problem (3) is thoroughly solved, and some partial solutions to problems (1) and (2) are achieved.
文摘The distribution function of the target moving in constant velocity and linear course and its meeting condition to the searcher are analyzed.Another proof method for spiral search pattern is presented and the mathematic model of the target possible position is established when performing the linear search.Base on them,the wrong idea about the spiral search pattern can be
文摘In this paper, we compute the non-detection probability of a randomly moving target by a stationary or moving searcher in a square search region. We find that when the searcher is stationary, the decay rate of the non-detection probability achieves the maximum value when the searcher is fixed at the center of the square search region;when both the searcher and the target diffuse with significant diffusion coefficients, the decay rate of the non-detection probability only depends on the sum of the diffusion coefficients of the target and searcher. When the searcher moves along prescribed deterministic tracks, our study shows that the fastest decay of the non-detection probability is achieved when the searcher scans horizontally and vertically.
文摘In order to analyze the sources of merger and acquisition(M & A)information,and the relationship between the M & A information and the M & A corporation management bureau,the searching and evaluation procedure of M & A target was discussed.The standard modes and procedures of finding the sources of the M & A target,examination of the M & A information,depicting on the future of M & A,and evaluation of the M & A target,were brought forward.
文摘We consider the problem of searching for a target that moves between a hiding area and an operating area over multiple fixed routes. The search is carried out with one or more cookie-cutter sensors, which can detect the target instantly once the target comes within the detection radius of the sensor. In the hiding area, the target is shielded from being detected. The residence times of the target, respectively, in the hiding area and in the operating area, are exponentially distributed. These dwell times are mathematically described by Markov transition rates. The decision of which route the target will take on each travel to and back from the operating area is governed by a probability distribution. We study the mathematical formulation of this search problem and analytically solve for the mean time to detection. Based on the mean time to capture, we evaluate the performance of placing the searcher(s) to monitor various travel route(s) or to scan the operating area. The optimal search design is the one that minimizes the mean time to detection. We find that in many situations the optimal search design is not the one suggested by the straightforward intuition. Our analytical results can provide operational guidances to homeland security, military, and law enforcement applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504430 and 61502526)the National Basic Research Program of China(Grant No.2013CB338002)
文摘For the unsorted database quantum search with the unknown fraction λ of target items, there are mainly two kinds of methods, i.e., fixed-point and trail-and-error.(i) In terms of the fixed-point method, Yoder et al. [Phys. Rev. Lett.113 210501(2014)] claimed that the quadratic speedup over classical algorithms has been achieved. However, in this paper, we point out that this is not the case, because the query complexity of Yoder’s algorithm is actually in O(1/λ01/2)rather than O(1/λ1/2), where λ0 is a known lower bound of λ.(ii) In terms of the trail-and-error method, currently the algorithm without randomness has to take more than 1 times queries or iterations than the algorithm with randomly selected parameters. For the above problems, we provide the first hybrid quantum search algorithm based on the fixed-point and trail-and-error methods, where the matched multiphase Grover operations are trialed multiple times and the number of iterations increases exponentially along with the number of trials. The upper bound of expected queries as well as the optimal parameters are derived. Compared with Yoder’s algorithm, the query complexity of our algorithm indeed achieves the optimal scaling in λ for quantum search, which reconfirms the practicality of the fixed-point method. In addition, our algorithm also does not contain randomness, and compared with the existing deterministic algorithm, the query complexity can be reduced by about 1/3. Our work provides a new idea for the research on fixed-point and trial-and-error quantum search.