Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the taskin...Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energy-efficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy.展开更多
Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two tim...Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster tracking convergence speed.展开更多
Target tracking is one of the applications of wireless sensor networks(WSNs).It is assumed that each sensor has a limited range for detecting the presence of the object,and the network is sufficiently dense so that ...Target tracking is one of the applications of wireless sensor networks(WSNs).It is assumed that each sensor has a limited range for detecting the presence of the object,and the network is sufficiently dense so that the sensors can cover the area of interest.Due to the limited battery resources of sensors,there is a tradeoff between the energy consumption and tracking accuracy.To solve this problem,this paper proposes an energy efficient tracking algorithm.Based on the cooperation of dispatchers,sensors in the area are scheduled to switch their working mode to track the target.Since energy consumed in active mode is higher than that in monitoring or sleeping mode,for each sampling interval,a minimum set of sensors is woken up based on the select mechanism.Meanwhile,other sensors keep in sleeping mode.Performance analysis and simulation results show that the proposed algorithm provides a better performance than other existing approaches.展开更多
Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce...Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce energy waste and response time, an improved predictive algorithm–exponential smoothing predictive algorithm (ESPA) is presented. With the aid of an additive proportion and differential (PD) controller, ESPA decreases the system predictive delay effectively. As a recovery mechanism, an optimal searching radius (OSR) algorithm is applied to calculate the optimal radius of the recovery zone. The simulation results validate that the proposed EDPT protocol performes better in terms of track failed ratio, energy waste ratio and enlarged sensing nodes ratio, respectively.展开更多
We discuss blending sensor scheduling strategies with particle filtering (PF) methods to deal with the prob-lem of tracking a ‘smart’ target, that is, a target being able to be aware it is being tracked and act in a...We discuss blending sensor scheduling strategies with particle filtering (PF) methods to deal with the prob-lem of tracking a ‘smart’ target, that is, a target being able to be aware it is being tracked and act in a manner that makes the future track more difficult. We concern here how to accurately track the target with a care on concealing the observer to a possible extent. We propose a PF method, which is tailored to mix a sensor scheduling technique, called covariance control, within its framework. A Rao-blackwellised unscented Kal-man filter (UKF) is used to produce proposal distributions for the PF method, making it more robust and computationally efficient. We show that the proposed method can balance the tracking filter performance with the observer’s concealment.展开更多
Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’...Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’ movement in different directions, targets’ speed variations and frequent connectivity failures of low powered sensor nodes. If all the low-powered sensor nodes are kept active in tracking multiple targets coming from different directions of the network, there is high probability of network failure due to wastage of power. It would be more realistic if the tracking area can be reduced so that less number of sensor nodes will be active and therefore, the network will consume less energy. Tracking area can be reduced by using the target’s kinematics. There is almost no method to track multiple targets based on targets’ kinematics. In our paper, we propose a distributed tracking method for tracking multiple targets considering targets’ kinematics. We simulate our method by a sensor network simulator OMNeT++ and empirical results state that our proposed methodology outperforms traditional tracking algorithms.展开更多
Target tracking is a well studied topic in wireless sensor networks. It is a procedure that nodes in the network collaborate in detecting targets and transmitting their information to the base-station continuously, wh...Target tracking is a well studied topic in wireless sensor networks. It is a procedure that nodes in the network collaborate in detecting targets and transmitting their information to the base-station continuously, which leads to data implosion and redundancy. To reduce traffic load of the network, a data compressing based target tracking protocol is proposed in this work. It first incorporates a clustering based data gather method to group sensor nodes into clusters. Then a novel threshold technique with bounded error is proposed to exploit the spatial correlation of sensed data and compress the data in the same cluster. Finally, the compact data presentations are transmitted to the base-station for targets localization. We evaluate our approach with a comprehensive set of simulations. It can be concluded that the proposed method yields excellent performance in energy savings and tracking quality.展开更多
Traditional tracking algorithms based on static sensors have several problems. First, the targets only occur in a part of the interested area; however, a large number of static sensors are distributed in the area to g...Traditional tracking algorithms based on static sensors have several problems. First, the targets only occur in a part of the interested area; however, a large number of static sensors are distributed in the area to guarantee entire coverage, which leads to wastage of sensor resources. Second, many static sensors have to remain in active mode to track the targets, which causes an increase of energy consumption. To solve these problems, a target group tracking algorithm based on a hybrid sensor network is proposed in this paper, which includes static sensors and mobile sensors. First, an estimation algorithm is proposed to estimate the objective region by static sensors, which work in low-power sensing mode. Second, a movement algorithm based on sliding windows is proposed for mobile sensors to obtain the destinations. Simulation results show that this algorithm can reduce the number of mobile sensors participating in the tracking task and prolong the network lifetime.展开更多
Target tracking is a challenging problem for wireless sensor networks because sensor nodes carry limited power recourses. Thus, scheduling of sensor nodes must focus on power conservation. It is possible to extend the...Target tracking is a challenging problem for wireless sensor networks because sensor nodes carry limited power recourses. Thus, scheduling of sensor nodes must focus on power conservation. It is possible to extend the lifetime of a network by dynamic clustering and duty cycling. Sensor Scheduling Algorithm Target Tracking-oriented is proposed in this paper. When the target occurs in the sensing filed, cluster and duty cycling algorithm is executed to scheduling sensor node to perform taking task. With the target moving, only one cluster is active, the other is in sleep state, which is efficient for conserving sensor nodes’ limited power. Using dynamic cluster and duty cycling technology can allocate efficiently sensor nodes’ limited energy and perform tasks coordinately.展开更多
Quality of Service (QoS) is important in the application of target tracking in wireless sensor networks (WSNs). When a target appears, it will trigger an event from one or more sensors. A target can only be accurately...Quality of Service (QoS) is important in the application of target tracking in wireless sensor networks (WSNs). When a target appears, it will trigger an event from one or more sensors. A target can only be accurately detected if a certain number of event packets are received by the sink in a predetermined detection time interval. In this paper, we propose a buffer management scheme based on event ordering to achieve QoS. We also propose a directional QoS-aware routing protocol (DQRP) for the dissemination of the event ordering list. After the dissemination, a priority queue buffer management scheme is used to ensure QoS. Our buffer management scheme works in conjunction with DQRP to ensure accurate as well as energy-efficient target detection in the presence of multiple targets. The novelty of our network architecture is that a distributed admission control scheme is implemented on each node based on a geographic routing algorithm. In our scenario, a target can only be accurately detected if a certain number of event packets are received by the sink in a predetermined detection time interval. Our main performance metric is the number of targets/events being detected. Our protocol maximizes the number of targets being detected.展开更多
Hybrid sensor networks (HSNs) comprise of mobile and static sensor nodes setup for purpose of collaboratively performing tasks like sensing a phenomenon or monitoring a region. In this paper, we present target interce...Hybrid sensor networks (HSNs) comprise of mobile and static sensor nodes setup for purpose of collaboratively performing tasks like sensing a phenomenon or monitoring a region. In this paper, we present target interception as a novel application using mobile sensor nodes as executor. Static sensor nodes sense, compute and communicate with each other for navigation. Mobile nodes are guided to intercept target by the static nodes nearby. Our approach does not require any prior maps of the environment thus, cutting down the cost of the overall energy consumption. As to multi-targets multi-mobile nodes case, we present a PMB algorithm for task assignment. Simulation results have verified the feasibility and effectiveness of our approach proposed.展开更多
In this paper, we explore the technology of tracking a group of targets with correlated motions in a wireless sensor network. Since a group of targets moves collectively and is restricted within a limited region, it i...In this paper, we explore the technology of tracking a group of targets with correlated motions in a wireless sensor network. Since a group of targets moves collectively and is restricted within a limited region, it is not worth consuming scarce resources of sensors in computing the trajectory of each single target. Hence, in this paper, the problem is modeled as tracking a geographical continuous region covered by all targets. A tracking algorithm is proposed to estimate the region covered by the target group in each sampling period. Based on the locations of sensors and the azimuthal angle of arrival (AOA) information, the estimated region covering all the group members is obtained. Algorithm analysis provides the fundamental limits to the accuracy of localizing a target group. Simulation results show that the proposed algorithm is superior to the existing hull algorithm due to the reduction in estimation error, which is between 10% and 40% of the hull algorithm, with a similar density of sensors. And when the density of sensors increases, the localization accuracy of the proposed algorithm improves dramatically.展开更多
The three-dimensional sensor networks are supposed to be deployed for many applications. So it is signifi-cant to do research on the problems of coverage and target detection in three-dimensional sensor networks. In t...The three-dimensional sensor networks are supposed to be deployed for many applications. So it is signifi-cant to do research on the problems of coverage and target detection in three-dimensional sensor networks. In this paper, we introduced Clifford algebra in 3D Euclidean space, developed the coverage model of 3D sensor networks based on Clifford algebra, and proposed a method for detecting target moving. With Clif-ford Spinor, calculating the target moving formulation is easier than traditional methods in sensor node’s coverage area.展开更多
Dynamic alliance(DA),namely,virtual corporations (VCs),is an enterprise management method. It means a temporary union formed by some independent commercial processes or corporations.Here, genetic algorithms(GA) is app...Dynamic alliance(DA),namely,virtual corporations (VCs),is an enterprise management method. It means a temporary union formed by some independent commercial processes or corporations.Here, genetic algorithms(GA) is applied to the research of nodes DA selection optimization in wireless sensor networks(WSN) target tracking(TT) problem.The detailed optimized selection method is presented in the paper and a typical simulation is conducted to verify the effectiveness of our model.展开更多
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte...A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.展开更多
A novel classification algorithm based on abnormal magnetic signals is proposed for ground moving targets which are made of ferromagnetic material. According to the effect of diverse targets on earth's magnetism,t...A novel classification algorithm based on abnormal magnetic signals is proposed for ground moving targets which are made of ferromagnetic material. According to the effect of diverse targets on earth's magnetism,the moving targets are detected by a magnetic sensor and classified with a simple computation method. The detection sensor is used for collecting a disturbance signal of earth magnetic field from an undetermined target. An optimum category match pattern of target signature is tested by training some statistical samples and designing a classification machine. Three ordinary targets are researched in the paper. The experimental results show that the algorithm has a low computation cost and a better sorting accuracy. This classification method can be applied to ground reconnaissance and target intrusion detection.展开更多
We study the problem of detecting a target that moves between a hiding area and an operating area over multiple fixed routes. The research is carried out with one or more cookie-cutter sensors with stochastic intermis...We study the problem of detecting a target that moves between a hiding area and an operating area over multiple fixed routes. The research is carried out with one or more cookie-cutter sensors with stochastic intermission, which turn on and off stochastically governed by an on-rate and an off-rate. A cookie-cutter sensor, when it is on, can detect the target instantly once the target comes within the detection radius of the sensor. In the hiding area, the target is shielded from being detected. The residence times of the target, respectively, in the hiding area and in the operating area, are exponentially distributed and are governed by rates of transitions between the two areas. On each travel between the two areas and in each travel direction, the target selects a route randomly according to a probability distribution. Previously, we analyzed the simple case where the sensors have no intermission (i.e., they stay on all the time). In the current study, the sensors are stochastically intermittent and are synchronized (i.e., they turn on or off simultaneously). This happens when all sensors are affected by the same environmental factors. We derive asymptotic expansions for the mean time to detection when the on-rate and off-rate of the sensors are large in comparison with the rates of the target traveling between the two areas. Based on the mean time to detection, we evaluate the performance of placing the sensor(s) to monitor various travel route(s) or to scan the operating area.展开更多
A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ba...A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ball, an algorithm is put forward for multi sensor multi target data fusion and an optimal solution for state estimation is presented. The simulation results prove the algorithm works well for the multi stationary target locating and the multi moving target tracking under the condition of the sparse target environment. Therefore, this method can be directly applied to the field artillery C 3I system.展开更多
基金partly supported by the Agency for Science,Technology and Research(A*Star)SERC(No.0521010037,0521210082)
文摘Sensor scheduling is essential to collaborative target tracking in wireless sensor networks (WSNs). In the existing works for target tracking in WSNs, such as the information-driven sensor query (IDSQ), the tasking sensors are scheduled to maximize the information gain while minimizing the resource cost based on the uniform sampling intervals, ignoring the changing of the target dynamics and the specific desirable tracking goals. This paper proposes a novel energy-efficient adaptive sensor scheduling approach that jointly selects tasking sensors and determines their associated sampling intervals according to the predicted tracking accuracy and tracking energy cost. At each time step, the sensors are scheduled in alternative tracking mode, namely, the fast tracking mode with smallest sampling interval or the tracking maintenance mode with larger sampling interval, according to a specified tracking error threshold. The approach employs an extended Kalman filter (EKF)-based estimation technique to predict the tracking accuracy and adopts an energy consumption model to predict the energy cost. Simulation results demonstrate that, compared to a non-adaptive sensor scheduling approach, the proposed approach can save energy cost significantly without degrading the tracking accuracy.
基金Supported by Science & Engineering Research Council of Singnpore (0521010037)
文摘Wireless sensor network (WSN) of active sensors suffers from serious inter-sensor interference (ISI) and imposes new design and implementation challenges. In this paper, based on the ultrasonic sensor network, two time-division based distributed sensor scheduling schemes are proposed to deal with ISI by scheduling sensors periodically and adaptively respectively. Extended Kalman filter (EKF) is used as the tracking algorithm in distributed manner. Simulation results show that the adaptive sensor scheduling scheme can achieve superior tracking accuracy with faster tracking convergence speed.
基金supported by the National Natural Science Foundation of China (60835001)
文摘Target tracking is one of the applications of wireless sensor networks(WSNs).It is assumed that each sensor has a limited range for detecting the presence of the object,and the network is sufficiently dense so that the sensors can cover the area of interest.Due to the limited battery resources of sensors,there is a tradeoff between the energy consumption and tracking accuracy.To solve this problem,this paper proposes an energy efficient tracking algorithm.Based on the cooperation of dispatchers,sensors in the area are scheduled to switch their working mode to track the target.Since energy consumed in active mode is higher than that in monitoring or sleeping mode,for each sampling interval,a minimum set of sensors is woken up based on the select mechanism.Meanwhile,other sensors keep in sleeping mode.Performance analysis and simulation results show that the proposed algorithm provides a better performance than other existing approaches.
基金supported by the National Basic Research Program of China (973 Program) (2010CB731800)the National Natural Science Foundation of China (60934003+2 种基金 60974123 60804010)the Hebei Provincial Educational Foundation of China (2008147)
文摘Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce energy waste and response time, an improved predictive algorithm–exponential smoothing predictive algorithm (ESPA) is presented. With the aid of an additive proportion and differential (PD) controller, ESPA decreases the system predictive delay effectively. As a recovery mechanism, an optimal searching radius (OSR) algorithm is applied to calculate the optimal radius of the recovery zone. The simulation results validate that the proposed EDPT protocol performes better in terms of track failed ratio, energy waste ratio and enlarged sensing nodes ratio, respectively.
文摘We discuss blending sensor scheduling strategies with particle filtering (PF) methods to deal with the prob-lem of tracking a ‘smart’ target, that is, a target being able to be aware it is being tracked and act in a manner that makes the future track more difficult. We concern here how to accurately track the target with a care on concealing the observer to a possible extent. We propose a PF method, which is tailored to mix a sensor scheduling technique, called covariance control, within its framework. A Rao-blackwellised unscented Kal-man filter (UKF) is used to produce proposal distributions for the PF method, making it more robust and computationally efficient. We show that the proposed method can balance the tracking filter performance with the observer’s concealment.
文摘Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’ movement in different directions, targets’ speed variations and frequent connectivity failures of low powered sensor nodes. If all the low-powered sensor nodes are kept active in tracking multiple targets coming from different directions of the network, there is high probability of network failure due to wastage of power. It would be more realistic if the tracking area can be reduced so that less number of sensor nodes will be active and therefore, the network will consume less energy. Tracking area can be reduced by using the target’s kinematics. There is almost no method to track multiple targets based on targets’ kinematics. In our paper, we propose a distributed tracking method for tracking multiple targets considering targets’ kinematics. We simulate our method by a sensor network simulator OMNeT++ and empirical results state that our proposed methodology outperforms traditional tracking algorithms.
文摘Target tracking is a well studied topic in wireless sensor networks. It is a procedure that nodes in the network collaborate in detecting targets and transmitting their information to the base-station continuously, which leads to data implosion and redundancy. To reduce traffic load of the network, a data compressing based target tracking protocol is proposed in this work. It first incorporates a clustering based data gather method to group sensor nodes into clusters. Then a novel threshold technique with bounded error is proposed to exploit the spatial correlation of sensed data and compress the data in the same cluster. Finally, the compact data presentations are transmitted to the base-station for targets localization. We evaluate our approach with a comprehensive set of simulations. It can be concluded that the proposed method yields excellent performance in energy savings and tracking quality.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20140875)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications,China(Grant No.NY213084)the National Natural Science Foundation of China(Grant No.61502243)
文摘Traditional tracking algorithms based on static sensors have several problems. First, the targets only occur in a part of the interested area; however, a large number of static sensors are distributed in the area to guarantee entire coverage, which leads to wastage of sensor resources. Second, many static sensors have to remain in active mode to track the targets, which causes an increase of energy consumption. To solve these problems, a target group tracking algorithm based on a hybrid sensor network is proposed in this paper, which includes static sensors and mobile sensors. First, an estimation algorithm is proposed to estimate the objective region by static sensors, which work in low-power sensing mode. Second, a movement algorithm based on sliding windows is proposed for mobile sensors to obtain the destinations. Simulation results show that this algorithm can reduce the number of mobile sensors participating in the tracking task and prolong the network lifetime.
文摘Target tracking is a challenging problem for wireless sensor networks because sensor nodes carry limited power recourses. Thus, scheduling of sensor nodes must focus on power conservation. It is possible to extend the lifetime of a network by dynamic clustering and duty cycling. Sensor Scheduling Algorithm Target Tracking-oriented is proposed in this paper. When the target occurs in the sensing filed, cluster and duty cycling algorithm is executed to scheduling sensor node to perform taking task. With the target moving, only one cluster is active, the other is in sleep state, which is efficient for conserving sensor nodes’ limited power. Using dynamic cluster and duty cycling technology can allocate efficiently sensor nodes’ limited energy and perform tasks coordinately.
文摘Quality of Service (QoS) is important in the application of target tracking in wireless sensor networks (WSNs). When a target appears, it will trigger an event from one or more sensors. A target can only be accurately detected if a certain number of event packets are received by the sink in a predetermined detection time interval. In this paper, we propose a buffer management scheme based on event ordering to achieve QoS. We also propose a directional QoS-aware routing protocol (DQRP) for the dissemination of the event ordering list. After the dissemination, a priority queue buffer management scheme is used to ensure QoS. Our buffer management scheme works in conjunction with DQRP to ensure accurate as well as energy-efficient target detection in the presence of multiple targets. The novelty of our network architecture is that a distributed admission control scheme is implemented on each node based on a geographic routing algorithm. In our scenario, a target can only be accurately detected if a certain number of event packets are received by the sink in a predetermined detection time interval. Our main performance metric is the number of targets/events being detected. Our protocol maximizes the number of targets being detected.
文摘Hybrid sensor networks (HSNs) comprise of mobile and static sensor nodes setup for purpose of collaboratively performing tasks like sensing a phenomenon or monitoring a region. In this paper, we present target interception as a novel application using mobile sensor nodes as executor. Static sensor nodes sense, compute and communicate with each other for navigation. Mobile nodes are guided to intercept target by the static nodes nearby. Our approach does not require any prior maps of the environment thus, cutting down the cost of the overall energy consumption. As to multi-targets multi-mobile nodes case, we present a PMB algorithm for task assignment. Simulation results have verified the feasibility and effectiveness of our approach proposed.
基金Project supported by the State Key Program of the National Natural Science Foundation of China(Grant No.60835001)the National Natural Science Foundation of China(Grant No.61104068)the Natural Science Foundation of Jiangsu Province China(Grant No.BK2010200)
文摘In this paper, we explore the technology of tracking a group of targets with correlated motions in a wireless sensor network. Since a group of targets moves collectively and is restricted within a limited region, it is not worth consuming scarce resources of sensors in computing the trajectory of each single target. Hence, in this paper, the problem is modeled as tracking a geographical continuous region covered by all targets. A tracking algorithm is proposed to estimate the region covered by the target group in each sampling period. Based on the locations of sensors and the azimuthal angle of arrival (AOA) information, the estimated region covering all the group members is obtained. Algorithm analysis provides the fundamental limits to the accuracy of localizing a target group. Simulation results show that the proposed algorithm is superior to the existing hull algorithm due to the reduction in estimation error, which is between 10% and 40% of the hull algorithm, with a similar density of sensors. And when the density of sensors increases, the localization accuracy of the proposed algorithm improves dramatically.
文摘The three-dimensional sensor networks are supposed to be deployed for many applications. So it is signifi-cant to do research on the problems of coverage and target detection in three-dimensional sensor networks. In this paper, we introduced Clifford algebra in 3D Euclidean space, developed the coverage model of 3D sensor networks based on Clifford algebra, and proposed a method for detecting target moving. With Clif-ford Spinor, calculating the target moving formulation is easier than traditional methods in sensor node’s coverage area.
文摘Dynamic alliance(DA),namely,virtual corporations (VCs),is an enterprise management method. It means a temporary union formed by some independent commercial processes or corporations.Here, genetic algorithms(GA) is applied to the research of nodes DA selection optimization in wireless sensor networks(WSN) target tracking(TT) problem.The detailed optimized selection method is presented in the paper and a typical simulation is conducted to verify the effectiveness of our model.
基金supported by National Natural Science Foundation of China (Nos.62265010,62061024)Gansu Province Science and Technology Plan (No.23YFGA0062)Gansu Province Innovation Fund (No.2022A-215)。
文摘A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.
基金Sponsored by the National Natural Science Foundation of China (60773129)the Excellent Youth Science and Technology Foundation of Anhui Province of China ( 08040106808)
文摘A novel classification algorithm based on abnormal magnetic signals is proposed for ground moving targets which are made of ferromagnetic material. According to the effect of diverse targets on earth's magnetism,the moving targets are detected by a magnetic sensor and classified with a simple computation method. The detection sensor is used for collecting a disturbance signal of earth magnetic field from an undetermined target. An optimum category match pattern of target signature is tested by training some statistical samples and designing a classification machine. Three ordinary targets are researched in the paper. The experimental results show that the algorithm has a low computation cost and a better sorting accuracy. This classification method can be applied to ground reconnaissance and target intrusion detection.
文摘We study the problem of detecting a target that moves between a hiding area and an operating area over multiple fixed routes. The research is carried out with one or more cookie-cutter sensors with stochastic intermission, which turn on and off stochastically governed by an on-rate and an off-rate. A cookie-cutter sensor, when it is on, can detect the target instantly once the target comes within the detection radius of the sensor. In the hiding area, the target is shielded from being detected. The residence times of the target, respectively, in the hiding area and in the operating area, are exponentially distributed and are governed by rates of transitions between the two areas. On each travel between the two areas and in each travel direction, the target selects a route randomly according to a probability distribution. Previously, we analyzed the simple case where the sensors have no intermission (i.e., they stay on all the time). In the current study, the sensors are stochastically intermittent and are synchronized (i.e., they turn on or off simultaneously). This happens when all sensors are affected by the same environmental factors. We derive asymptotic expansions for the mean time to detection when the on-rate and off-rate of the sensors are large in comparison with the rates of the target traveling between the two areas. Based on the mean time to detection, we evaluate the performance of placing the sensor(s) to monitor various travel route(s) or to scan the operating area.
文摘A method for the multi target locating and tracking with the multi sensor in a field artillery system is studied. A general modeling structure of the system is established. Based on concepts of cluster and closed ball, an algorithm is put forward for multi sensor multi target data fusion and an optimal solution for state estimation is presented. The simulation results prove the algorithm works well for the multi stationary target locating and the multi moving target tracking under the condition of the sparse target environment. Therefore, this method can be directly applied to the field artillery C 3I system.