期刊文献+
共找到704篇文章
< 1 2 36 >
每页显示 20 50 100
Modified joint probabilistic data association with classification-aided for multitarget tracking 被引量:9
1
作者 Ba Hongxin Cao Lei +1 位作者 He Xinyi Cheng Qun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期434-439,共6页
Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are... Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid. 展开更多
关键词 multi-target tracking data association joint probabilistic data association classification information track coalescence maneuvering target.
下载PDF
FGAs-Based Data Association Algorithm for Multi-sensor Multi-target Tracking 被引量:4
2
作者 朱力立 张焕春 经亚枝 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第3期177-181,共5页
A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-bes... A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed. 展开更多
关键词 multi-target tracking data association FGA assignment problem kalmanfilter
下载PDF
Rough Sets Probabilistic Data Association Algorithm and its Application in Multi-target Tracking
3
作者 Long-qiang NI She-sheng GAO +1 位作者 Peng-cheng FENG Kai ZHAO 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第4期208-216,共9页
A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking appl... A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking application.In this new algorithm,the measurements lying in the intersection of two or more validation regions are allocated to the corresponding targets through rough set theory,and the multi-target tracking problem is transformed into a single target tracking after the classification of measurements lying in the intersection region.Several typical multi-target tracking applications are given.The simulation results show that the algorithm can not only reduce the complexity and time consumption but also enhance the accuracy and stability of the tracking results. 展开更多
关键词 数据关联算法 多目标跟踪 粗糙集理论 应用 概率 时间消耗 问题转化 仿真结果
下载PDF
Maneuvering Multi-target Tracking Algorithm Based on Modified Generalized Probabilistic Data Association
4
作者 Zhentao Hu Chunling Fu Xianxing Liu 《Engineering(科研)》 2011年第12期1155-1160,共6页
Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilis... Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilistic data association is proposed in this paper. In view of the advantage of particle filter which can deal with the nonlinear and non-Gaussian system, it is introduced into the framework of generalized probabilistic data association to calculate the residual and residual covariance matrices, and the interconnection probability is further optimized. On that basis, the dynamic combination of particle filter and generalized probabilistic data association method is realized in the new algorithm. The theoretical analysis and experimental results show the filtering precision is obviously improved with respect to the tradition method using suboptimal filter. 展开更多
关键词 MULTI-target tracking PARTICLE FILTER GENERALIZED PROBABILISTIC data association Clutters
下载PDF
Track Association for Dynamic Target Tracking System Based on AP Algorithm
5
作者 储岳中 徐波 高有涛 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第6期643-651,共9页
Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.... Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.A multi-sensor data association is proposed based on aftinity propagation(AP)algorithm.The proposed method needs an initial similarity,a distance between any two points,as a parameter,therefore,the similarity matrix is calculated by track position,velocity and azimuth of track data.The approach can automatically obtain the optimal classification of uncertain target based on clustering validity index.Furthermore,the same kind of data are fused based on the variance of measured data and the fusion result can be taken as a new measured data of the target.Finally,the measured data are classified to a certain target based on the nearest neighbor ideas and its characteristics,then filtering and target tracking are conducted.The experimental results show that the proposed method can effectively achieve multi-sensor and multi-target track association. 展开更多
关键词 affinity propagation algorithm data fusion target tracking track association
下载PDF
Loopy belief propagation based data association for extended target tracking 被引量:4
6
作者 Zhenzhen SU Hongbing JI Yongquan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第8期2212-2223,共12页
The data association problem of multiple extended target tracking is very challenging because each target may generate multiple measurements.Recently,the belief propagation based multiple target tracking algorithms wi... The data association problem of multiple extended target tracking is very challenging because each target may generate multiple measurements.Recently,the belief propagation based multiple target tracking algorithms with high efficiency have been a research focus.Different from the belief propagation based Extended Target tracking based on Belief Propagation(ET-BP)algorithm proposed in our previous work,a new graphical model formulation of data association for multiple extended target tracking is proposed in this paper.The proposed formulation can be solved by the Loopy Belief Propagation(LBP)algorithm.Furthermore,the simplified measurement set in the ET-BP algorithm is modified to improve tracking accuracy.Finally,experiment results show that the proposed algorithm has better performance than the ET-BP and joint probabilistic data association based on the simplified measurement set algorithms in terms of accuracy and efficiency.Additionally,the convergence of the proposed algorithm is verified in the simulations. 展开更多
关键词 Belief propagation data association Extended target Graphical model Simplified measurement set target tracking
原文传递
A combination algorithm of Chaos optimization and genetic algorithm and its application in maneuvering multiple targets data association
7
作者 王建华 张琳 刘维亭 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第4期470-473,共4页
The most important problem in targets tracking is data association which may be represented as a sort of constraint combinational optimization problem. Chaos optimization and adaptive genetic algorithm were used to de... The most important problem in targets tracking is data association which may be represented as a sort of constraint combinational optimization problem. Chaos optimization and adaptive genetic algorithm were used to deal with the problem of multi-targets data association separately. Based on the analysis of the limitation of chaos optimization and genetic algorithm, a new chaos genetic optimization combination algorithm was presented. This new algorithm first applied the "rough" search of chaos optimization to initialize the population of GA, then optimized the population by real-coded adaptive GA. In this way, GA can not only jump out of the "trap" of local optimal results easily but also increase the rate of convergence. And the new method can also avoid the complexity and time-consumed limitation of conventional way. The simulation results show that the combination algorithm can obtain higher correct association percent and the effect of association is obviously superior to chaos optimization or genetic algorithm separately. This method has better convergence property as well as time property than the conventional ones. 展开更多
关键词 data association chaos optimization genetic algorithm maneuvering multiple targets tracking
下载PDF
Target tracking based on frequency spectrum amplitude 被引量:1
8
作者 Guo Huidong Zhang Xinhua Xia Zhijun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期473-476,共4页
The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algo... The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algorithm is presented which adopts the amplitude of frequency spectrum to improve target tracking in clutter. The prohabilisfic density distribution of frequency spectrum amplitude is analyzed. By simulation, the results show that the algorithm is superior to PDA. This approach enhances stability for the association probability and increases the performance of target tracking. 展开更多
关键词 target tracking AMPLITUDE frequency spectrum probabilistic data association.
下载PDF
Algorithm for Multi-laser-target Tracking Based on Clustering Fusion
9
作者 张立群 李言俊 张科 《Defence Technology(防务技术)》 SCIE EI CAS 2007年第1期28-32,共5页
Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in ... Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective. 展开更多
关键词 激光报警器 多目标跟踪 算法 聚类融合 信息处理
下载PDF
A new algorithm of bearings-only multi-target tracking of bistatic system 被引量:2
10
作者 Benlian XU Zhiquan WANG 《控制理论与应用(英文版)》 EI 2006年第4期331-337,共7页
Much research mainly focuses on the batch processing method (e.g. maximum likelihood method) when bearings-only multiple targets tracking of bistatic sonar system is considered. In this paper, the idea of recursive ... Much research mainly focuses on the batch processing method (e.g. maximum likelihood method) when bearings-only multiple targets tracking of bistatic sonar system is considered. In this paper, the idea of recursive processing method is presented and employed, and corresponding data association algorithms, i.e. a multi-objective ant-colony-based optimization algorithm and an easy fast assignment algorithm are developed to solve the measurements-to-measurements and measurements-to-tracks data association problems of bistatic sonar system, respectively. Monte-Carlo simulations are induced to evaluate the effectiveness of the proposed methods. 展开更多
关键词 BEARINGS-ONLY Multi-target tracking data association Ant colony optimization
下载PDF
SEQUENTIAL ALGORITHM FOR MULTISENSOR PROBABILISTIC DATA ASSOCIATION
11
作者 Hu Wenlong Mao Shiyi(Dept of Electronic Engineering, Bejiing University of Aeronauticsand Astronatutics, Beijing, 100083, China) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第2期144-150,共7页
Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorit... Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorithm into the multisensor tracking systemsconsisting of heterogeneous sensors for the data association. 展开更多
关键词 multiple target tracking SENSORS sequential analysis data association data fusion
下载PDF
New data association technique based on ACO with directional information considered
12
作者 Kang Li Xie Weixin Huang Jingxiong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第6期1283-1286,共4页
Due to the advantages of ant colony optimization (ACO) in solving complex problems, a new data association algorithm based on ACO in a cluttered environment called DACDA is proposed. In the proposed method, the conc... Due to the advantages of ant colony optimization (ACO) in solving complex problems, a new data association algorithm based on ACO in a cluttered environment called DACDA is proposed. In the proposed method, the concept for tour and the length of tour are redefined. Additionally, the directional information is incorporated into the proposed method because it is one of the most important factors that affects the performance of data association. Kalman filter is employed to estimate target states. Computer simulation results show that the proposed method could carry out data association in an acceptable CPU time, and the correct data association rate is higher than that obtained by the data association (DA) algorithm not combined with directional information. 展开更多
关键词 ant colony optimization data association target tracking directional information
下载PDF
VIDEO MULTI-TARGET TRACKING BASED ON PROBABILISTIC GRAPHICAL MODEL
13
作者 Xu Feng Huang Chenrong +1 位作者 Wu Zhengjun Xu Lizhong 《Journal of Electronics(China)》 2011年第4期548-557,共10页
In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce... In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce the multi-target uncertainty.However,the traditional data association method is difficult to track accurately when the target is occluded.To remove the occlusion in the video,combined with the theory of data association,this paper adopts the probabilistic graphical model for multi-target modeling and analysis of the targets relationship in the particle filter framework.Ex-perimental results show that the proposed algorithm can solve the occlusion problem better compared with the traditional algorithm. 展开更多
关键词 Video tracking Multi-target tracking data association Probabilistic graphical model Particle filter
下载PDF
Augmented input estimation in multiple maneuvering target tracking 被引量:1
14
作者 HADAEGH Mahmoudreza KHALOOZADEH Hamid BEHESHTI Mohammadtaghi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期841-851,共11页
This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observa... This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT. 展开更多
关键词 MULTI-target tracking (MTT) MARKOV chain Monte-Carlodata association (MCMCDA) data association (DA) augmentedinput estimation (AIE)
下载PDF
MULTISENSOR DISTRIBUTED EXTENDED KALMAN FILTERING ALGORITHM AND ITS APPLICATION TO RADAR/IR TARGET TRACKING
15
作者 Cui Ningzhou Xie Weixin Yu Xiongnan Ma Yuanliang(Marine Engineering College, Northwestern Polytechnical University, Xi’an 710072) (Electronic Engineering College, Xidian University, Xi’an 710071) 《Journal of Electronics(China)》 1998年第1期69-75,共7页
A multisensor distributed extended Kalman filtering algorithm is presented for nonlinear system, in which the dynamic equation of the system and the equations of sensor’s measurements are linearized in the global est... A multisensor distributed extended Kalman filtering algorithm is presented for nonlinear system, in which the dynamic equation of the system and the equations of sensor’s measurements are linearized in the global estimate and global prediction respectively and the suboptimal global estimate based on all available information can be reconstructed from the estimates computed by local sensors based solely on their own local information and transmitted to the data fusion center. An analysis of the properties of the algorithm presented here shows that the global estimate has higher precision than the local one and smaller linearization error than the existing method. Finally, an application of the algorithm to radar/IR tracking of a maneuvering target is illustrated. Simulation results show the effectiveness of the algorithm. 展开更多
关键词 Extended KALMAN FILTERING target tracking DISTRIBUTED estimation data fusion
下载PDF
Hybrid-driven Gaussian process online learning for highly maneuvering multi-target tracking
16
作者 Qiang GUO Long TENG +3 位作者 Tianxiang YIN Yunfei GUO Xinliang WU Wenming SONG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第11期1647-1656,共10页
The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly mane... The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets,leveraging the advantages of both data-driven and model-based algorithms.The time-varying constant velocity model is integrated into the Gaussian process(GP)of online learning to improve the performance of GP prediction.This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking.Through the simulations,it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker. 展开更多
关键词 target tracking Gaussian process data-DRIVEN Online learning Model-driven Probabilistic data association
原文传递
Data association based on target signal classification information 被引量:3
17
作者 Guo Lei Tang Bin Liu Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期246-251,共6页
In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too... In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy. 展开更多
关键词 passive tracking joint probabilistic data association target signal classification information.
下载PDF
Asynchronous Data Fusion of Two Different Sensors 被引量:2
18
作者 戴亚平 王军政 《Journal of Beijing Institute of Technology》 EI CAS 2001年第4期402-405,共4页
An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitt... An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved. 展开更多
关键词 target tracking multi sensor data fusion
下载PDF
Maneuvering Target Tracking in Dense Clutter Based on Particle Filtering 被引量:8
19
作者 YANG Xiaojun XING Keyi FENG Xingle 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第2期171-180,共10页
An improved particle filtering(IPF) is presented to perform maneuvering target tracking in dense clutter.The proposed filter uses several efficient variance reduction methods to combat particle degeneracy,low mode p... An improved particle filtering(IPF) is presented to perform maneuvering target tracking in dense clutter.The proposed filter uses several efficient variance reduction methods to combat particle degeneracy,low mode prior probabilities and measure-ment-origin uncertainty.Within the framework of a hybrid state estimation,each particle samples a discrete mode from its poste-rior distribution and the continuous state variables are approximated by a multivariate Gaussian mixture that is updated by an unscented Kalman filtering(UKF).The uncertainty of measurement origin is solved by Monte Carlo probabilistic data associa-tion method where the distribution of interest is approximated by particle filtering and UKF.Correct data association and precise behavior mode detection are successfully achieved by the proposed method in the environment with heavy clutter and very low mode prior probability.The performance of the proposed filter is examined and compared by Monte Carlo simulation over typical target scenario for various clutter densities.The simulation results show the effectiveness of the proposed filter. 展开更多
关键词 particle filtering Monte Carlo methods Kalman filter probability data association target tracking nonlinear filtering
原文传递
Optimality analysis of one-step OOSM filtering algorithms in target tracking 被引量:12
20
作者 ZHOU WenHui LI Lin +1 位作者 CHEN GuoHai YU AnXi 《Science in China(Series F)》 2007年第2期170-187,共18页
In centralized multisensor tracking systems, there are out-of-sequence measurements (OOSMs) frequently arising due to different time delays in communication links and varying pre-processing times at the sensor. Such... In centralized multisensor tracking systems, there are out-of-sequence measurements (OOSMs) frequently arising due to different time delays in communication links and varying pre-processing times at the sensor. Such OOSM arrival can induce the "negative-time measurement update" problem, which is quite common in real mulUsensor tracking systems. The A1 optimal update algorithm with OOSM is presented by Bar-Shalom for one-step case. However, this paper proves that the optimality of A1 algorithm is lost in direct discrete-time model (DDM) of the process noise, it holds true only in discreUzed continuous-time model (DCM). One better OOSM filtering algorithm for DDM case is presented. Also, another new optimal OOSM filtering algorithm, which is independent of the discrete time model of the process noise, is presented here. The performance of the two new algorithms is compared with that of A1 algorithm by Monte Carlo simulations. The effectiveness and correctness of the two proposed algorithms are validated by analysis and simulation results. 展开更多
关键词 out-of-sequence measurement (OOSM) OOSM filtering target tracking data fusion
原文传递
上一页 1 2 36 下一页 到第
使用帮助 返回顶部