Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are...Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.展开更多
A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-bes...A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.展开更多
A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking appl...A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking application.In this new algorithm,the measurements lying in the intersection of two or more validation regions are allocated to the corresponding targets through rough set theory,and the multi-target tracking problem is transformed into a single target tracking after the classification of measurements lying in the intersection region.Several typical multi-target tracking applications are given.The simulation results show that the algorithm can not only reduce the complexity and time consumption but also enhance the accuracy and stability of the tracking results.展开更多
Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilis...Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilistic data association is proposed in this paper. In view of the advantage of particle filter which can deal with the nonlinear and non-Gaussian system, it is introduced into the framework of generalized probabilistic data association to calculate the residual and residual covariance matrices, and the interconnection probability is further optimized. On that basis, the dynamic combination of particle filter and generalized probabilistic data association method is realized in the new algorithm. The theoretical analysis and experimental results show the filtering precision is obviously improved with respect to the tradition method using suboptimal filter.展开更多
Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system....Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.A multi-sensor data association is proposed based on aftinity propagation(AP)algorithm.The proposed method needs an initial similarity,a distance between any two points,as a parameter,therefore,the similarity matrix is calculated by track position,velocity and azimuth of track data.The approach can automatically obtain the optimal classification of uncertain target based on clustering validity index.Furthermore,the same kind of data are fused based on the variance of measured data and the fusion result can be taken as a new measured data of the target.Finally,the measured data are classified to a certain target based on the nearest neighbor ideas and its characteristics,then filtering and target tracking are conducted.The experimental results show that the proposed method can effectively achieve multi-sensor and multi-target track association.展开更多
The data association problem of multiple extended target tracking is very challenging because each target may generate multiple measurements.Recently,the belief propagation based multiple target tracking algorithms wi...The data association problem of multiple extended target tracking is very challenging because each target may generate multiple measurements.Recently,the belief propagation based multiple target tracking algorithms with high efficiency have been a research focus.Different from the belief propagation based Extended Target tracking based on Belief Propagation(ET-BP)algorithm proposed in our previous work,a new graphical model formulation of data association for multiple extended target tracking is proposed in this paper.The proposed formulation can be solved by the Loopy Belief Propagation(LBP)algorithm.Furthermore,the simplified measurement set in the ET-BP algorithm is modified to improve tracking accuracy.Finally,experiment results show that the proposed algorithm has better performance than the ET-BP and joint probabilistic data association based on the simplified measurement set algorithms in terms of accuracy and efficiency.Additionally,the convergence of the proposed algorithm is verified in the simulations.展开更多
The most important problem in targets tracking is data association which may be represented as a sort of constraint combinational optimization problem. Chaos optimization and adaptive genetic algorithm were used to de...The most important problem in targets tracking is data association which may be represented as a sort of constraint combinational optimization problem. Chaos optimization and adaptive genetic algorithm were used to deal with the problem of multi-targets data association separately. Based on the analysis of the limitation of chaos optimization and genetic algorithm, a new chaos genetic optimization combination algorithm was presented. This new algorithm first applied the "rough" search of chaos optimization to initialize the population of GA, then optimized the population by real-coded adaptive GA. In this way, GA can not only jump out of the "trap" of local optimal results easily but also increase the rate of convergence. And the new method can also avoid the complexity and time-consumed limitation of conventional way. The simulation results show that the combination algorithm can obtain higher correct association percent and the effect of association is obviously superior to chaos optimization or genetic algorithm separately. This method has better convergence property as well as time property than the conventional ones.展开更多
The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algo...The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algorithm is presented which adopts the amplitude of frequency spectrum to improve target tracking in clutter. The prohabilisfic density distribution of frequency spectrum amplitude is analyzed. By simulation, the results show that the algorithm is superior to PDA. This approach enhances stability for the association probability and increases the performance of target tracking.展开更多
Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in ...Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective.展开更多
Much research mainly focuses on the batch processing method (e.g. maximum likelihood method) when bearings-only multiple targets tracking of bistatic sonar system is considered. In this paper, the idea of recursive ...Much research mainly focuses on the batch processing method (e.g. maximum likelihood method) when bearings-only multiple targets tracking of bistatic sonar system is considered. In this paper, the idea of recursive processing method is presented and employed, and corresponding data association algorithms, i.e. a multi-objective ant-colony-based optimization algorithm and an easy fast assignment algorithm are developed to solve the measurements-to-measurements and measurements-to-tracks data association problems of bistatic sonar system, respectively. Monte-Carlo simulations are induced to evaluate the effectiveness of the proposed methods.展开更多
Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorit...Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorithm into the multisensor tracking systemsconsisting of heterogeneous sensors for the data association.展开更多
Due to the advantages of ant colony optimization (ACO) in solving complex problems, a new data association algorithm based on ACO in a cluttered environment called DACDA is proposed. In the proposed method, the conc...Due to the advantages of ant colony optimization (ACO) in solving complex problems, a new data association algorithm based on ACO in a cluttered environment called DACDA is proposed. In the proposed method, the concept for tour and the length of tour are redefined. Additionally, the directional information is incorporated into the proposed method because it is one of the most important factors that affects the performance of data association. Kalman filter is employed to estimate target states. Computer simulation results show that the proposed method could carry out data association in an acceptable CPU time, and the correct data association rate is higher than that obtained by the data association (DA) algorithm not combined with directional information.展开更多
In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce...In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce the multi-target uncertainty.However,the traditional data association method is difficult to track accurately when the target is occluded.To remove the occlusion in the video,combined with the theory of data association,this paper adopts the probabilistic graphical model for multi-target modeling and analysis of the targets relationship in the particle filter framework.Ex-perimental results show that the proposed algorithm can solve the occlusion problem better compared with the traditional algorithm.展开更多
This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observa...This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.展开更多
A multisensor distributed extended Kalman filtering algorithm is presented for nonlinear system, in which the dynamic equation of the system and the equations of sensor’s measurements are linearized in the global est...A multisensor distributed extended Kalman filtering algorithm is presented for nonlinear system, in which the dynamic equation of the system and the equations of sensor’s measurements are linearized in the global estimate and global prediction respectively and the suboptimal global estimate based on all available information can be reconstructed from the estimates computed by local sensors based solely on their own local information and transmitted to the data fusion center. An analysis of the properties of the algorithm presented here shows that the global estimate has higher precision than the local one and smaller linearization error than the existing method. Finally, an application of the algorithm to radar/IR tracking of a maneuvering target is illustrated. Simulation results show the effectiveness of the algorithm.展开更多
The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly mane...The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets,leveraging the advantages of both data-driven and model-based algorithms.The time-varying constant velocity model is integrated into the Gaussian process(GP)of online learning to improve the performance of GP prediction.This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking.Through the simulations,it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker.展开更多
In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too...In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.展开更多
An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitt...An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved.展开更多
An improved particle filtering(IPF) is presented to perform maneuvering target tracking in dense clutter.The proposed filter uses several efficient variance reduction methods to combat particle degeneracy,low mode p...An improved particle filtering(IPF) is presented to perform maneuvering target tracking in dense clutter.The proposed filter uses several efficient variance reduction methods to combat particle degeneracy,low mode prior probabilities and measure-ment-origin uncertainty.Within the framework of a hybrid state estimation,each particle samples a discrete mode from its poste-rior distribution and the continuous state variables are approximated by a multivariate Gaussian mixture that is updated by an unscented Kalman filtering(UKF).The uncertainty of measurement origin is solved by Monte Carlo probabilistic data associa-tion method where the distribution of interest is approximated by particle filtering and UKF.Correct data association and precise behavior mode detection are successfully achieved by the proposed method in the environment with heavy clutter and very low mode prior probability.The performance of the proposed filter is examined and compared by Monte Carlo simulation over typical target scenario for various clutter densities.The simulation results show the effectiveness of the proposed filter.展开更多
In centralized multisensor tracking systems, there are out-of-sequence measurements (OOSMs) frequently arising due to different time delays in communication links and varying pre-processing times at the sensor. Such...In centralized multisensor tracking systems, there are out-of-sequence measurements (OOSMs) frequently arising due to different time delays in communication links and varying pre-processing times at the sensor. Such OOSM arrival can induce the "negative-time measurement update" problem, which is quite common in real mulUsensor tracking systems. The A1 optimal update algorithm with OOSM is presented by Bar-Shalom for one-step case. However, this paper proves that the optimality of A1 algorithm is lost in direct discrete-time model (DDM) of the process noise, it holds true only in discreUzed continuous-time model (DCM). One better OOSM filtering algorithm for DDM case is presented. Also, another new optimal OOSM filtering algorithm, which is independent of the discrete time model of the process noise, is presented here. The performance of the two new algorithms is compared with that of A1 algorithm by Monte Carlo simulations. The effectiveness and correctness of the two proposed algorithms are validated by analysis and simulation results.展开更多
基金Defense Advanced Research Project "the Techniques of Information Integrated Processing and Fusion" in the Eleventh Five-Year Plan (513060302).
文摘Joint probabilistic data association is an effective method for tracking multiple targets in clutter, but only the target kinematic information is used in measure-to-track association. If the kinematic likelihoods are similar for different closely spaced targets, there is ambiguity in using the kinematic information alone; the correct association probability will decrease in conventional joint probabilistic data association algorithm and track coalescence will occur easily. A modified algorithm of joint probabilistic data association with classification-aided is presented, which avoids track coalescence when tracking multiple neighboring targets. Firstly, an identification matrix is defined, which is used to simplify validation matrix to decrease computational complexity. Then, target class information is integrated into the data association process. Performance comparisons with and without the use of class information in JPDA are presented on multiple closely spaced maneuvering targets tracking problem. Simulation results quantify the benefits of classification-aided JPDA for improved multiple targets tracking, especially in the presence of association uncertainty in the kinematic measurement and target maneuvering. Simulation results indicate that the algorithm is valid.
文摘A novel data association algorithm is developed based on fuzzy geneticalgorithms (FGAs). The static part of data association uses one FGA to determine both the lists ofcomposite measurements and the solutions of m-best S-D assignment. In the dynamic part of dataassociation, the results of the m-best S-D assignment are then used in turn, with a Kalman filterstate estimator, in a multi-population FGA-based dynamic 2D assignment algorithm to estimate thestates of the moving targets over time. Such an assignment-based data association algorithm isdemonstrated on a simulated passive sensor track formation and maintenance problem. The simulationresults show its feasibility in multi-sensor multi-target tracking. Moreover, algorithm developmentand real-time problems are briefly discussed.
文摘A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking application.In this new algorithm,the measurements lying in the intersection of two or more validation regions are allocated to the corresponding targets through rough set theory,and the multi-target tracking problem is transformed into a single target tracking after the classification of measurements lying in the intersection region.Several typical multi-target tracking applications are given.The simulation results show that the algorithm can not only reduce the complexity and time consumption but also enhance the accuracy and stability of the tracking results.
文摘Aiming at the problem of strong nonlinear and effective echo confirm of multi-target tracking system in clutters environment, a novel maneuvering multitarget tracking algorithm based on modified generalized probabilistic data association is proposed in this paper. In view of the advantage of particle filter which can deal with the nonlinear and non-Gaussian system, it is introduced into the framework of generalized probabilistic data association to calculate the residual and residual covariance matrices, and the interconnection probability is further optimized. On that basis, the dynamic combination of particle filter and generalized probabilistic data association method is realized in the new algorithm. The theoretical analysis and experimental results show the filtering precision is obviously improved with respect to the tradition method using suboptimal filter.
基金Supported by the National Natural Science Foundation of China(11078001)
文摘Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.A multi-sensor data association is proposed based on aftinity propagation(AP)algorithm.The proposed method needs an initial similarity,a distance between any two points,as a parameter,therefore,the similarity matrix is calculated by track position,velocity and azimuth of track data.The approach can automatically obtain the optimal classification of uncertain target based on clustering validity index.Furthermore,the same kind of data are fused based on the variance of measured data and the fusion result can be taken as a new measured data of the target.Finally,the measured data are classified to a certain target based on the nearest neighbor ideas and its characteristics,then filtering and target tracking are conducted.The experimental results show that the proposed method can effectively achieve multi-sensor and multi-target track association.
基金supported by the National Natural Science Foundation of China(No.61871301)National Natural Science Foundation of Shaanxi Province,China(No.2018JQ6059)Postdoctoral Science Foundation of China(No.2018M633470)。
文摘The data association problem of multiple extended target tracking is very challenging because each target may generate multiple measurements.Recently,the belief propagation based multiple target tracking algorithms with high efficiency have been a research focus.Different from the belief propagation based Extended Target tracking based on Belief Propagation(ET-BP)algorithm proposed in our previous work,a new graphical model formulation of data association for multiple extended target tracking is proposed in this paper.The proposed formulation can be solved by the Loopy Belief Propagation(LBP)algorithm.Furthermore,the simplified measurement set in the ET-BP algorithm is modified to improve tracking accuracy.Finally,experiment results show that the proposed algorithm has better performance than the ET-BP and joint probabilistic data association based on the simplified measurement set algorithms in terms of accuracy and efficiency.Additionally,the convergence of the proposed algorithm is verified in the simulations.
文摘The most important problem in targets tracking is data association which may be represented as a sort of constraint combinational optimization problem. Chaos optimization and adaptive genetic algorithm were used to deal with the problem of multi-targets data association separately. Based on the analysis of the limitation of chaos optimization and genetic algorithm, a new chaos genetic optimization combination algorithm was presented. This new algorithm first applied the "rough" search of chaos optimization to initialize the population of GA, then optimized the population by real-coded adaptive GA. In this way, GA can not only jump out of the "trap" of local optimal results easily but also increase the rate of convergence. And the new method can also avoid the complexity and time-consumed limitation of conventional way. The simulation results show that the combination algorithm can obtain higher correct association percent and the effect of association is obviously superior to chaos optimization or genetic algorithm separately. This method has better convergence property as well as time property than the conventional ones.
基金This project was supported by the Defense Pre-Research Project of the‘Tenth Five-Year-Plan’of China (40105010101)
文摘The amplitude of frequency spectrum can he integrated with prohabilisfic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algorithm is presented which adopts the amplitude of frequency spectrum to improve target tracking in clutter. The prohabilisfic density distribution of frequency spectrum amplitude is analyzed. By simulation, the results show that the algorithm is superior to PDA. This approach enhances stability for the association probability and increases the performance of target tracking.
基金University Doctor Subject Foundation of China (20060699024)
文摘Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective.
基金This paper was supported by the Natural Science Foundation of Jiangsu Province, China (No. BK2004132).
文摘Much research mainly focuses on the batch processing method (e.g. maximum likelihood method) when bearings-only multiple targets tracking of bistatic sonar system is considered. In this paper, the idea of recursive processing method is presented and employed, and corresponding data association algorithms, i.e. a multi-objective ant-colony-based optimization algorithm and an easy fast assignment algorithm are developed to solve the measurements-to-measurements and measurements-to-tracks data association problems of bistatic sonar system, respectively. Monte-Carlo simulations are induced to evaluate the effectiveness of the proposed methods.
文摘Based upon a multisensor sequential processing filter, the target states in a3D Cartesian system are projected into the measurement space of each sensor to extend thejoint probabilistic data association (JPDA) algorithm into the multisensor tracking systemsconsisting of heterogeneous sensors for the data association.
文摘Due to the advantages of ant colony optimization (ACO) in solving complex problems, a new data association algorithm based on ACO in a cluttered environment called DACDA is proposed. In the proposed method, the concept for tour and the length of tour are redefined. Additionally, the directional information is incorporated into the proposed method because it is one of the most important factors that affects the performance of data association. Kalman filter is employed to estimate target states. Computer simulation results show that the proposed method could carry out data association in an acceptable CPU time, and the correct data association rate is higher than that obtained by the data association (DA) algorithm not combined with directional information.
基金Supported by the National High Technology Research and Development Program of China (No. 2007AA11Z227)the Natural Science Foundation of Jiangsu Province of China(No. BK2009352)the Fundamental Research Funds for the Central Universities of China (No. 2010B16414)
文摘In the technique of video multi-target tracking,the common particle filter can not deal well with uncertain relations among multiple targets.To solve this problem,many researchers use data association method to reduce the multi-target uncertainty.However,the traditional data association method is difficult to track accurately when the target is occluded.To remove the occlusion in the video,combined with the theory of data association,this paper adopts the probabilistic graphical model for multi-target modeling and analysis of the targets relationship in the particle filter framework.Ex-perimental results show that the proposed algorithm can solve the occlusion problem better compared with the traditional algorithm.
文摘This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.
文摘A multisensor distributed extended Kalman filtering algorithm is presented for nonlinear system, in which the dynamic equation of the system and the equations of sensor’s measurements are linearized in the global estimate and global prediction respectively and the suboptimal global estimate based on all available information can be reconstructed from the estimates computed by local sensors based solely on their own local information and transmitted to the data fusion center. An analysis of the properties of the algorithm presented here shows that the global estimate has higher precision than the local one and smaller linearization error than the existing method. Finally, an application of the algorithm to radar/IR tracking of a maneuvering target is illustrated. Simulation results show the effectiveness of the algorithm.
基金Project supported by the Technology Foundation for Basic Enhancement Plan,China (No.2021-JCJQ-JJ-0301)the National Major Research and Development Project of China (No.2018YFE0206500)+1 种基金the National Natural Science Foundation of China (No.62071140)the National Special for International Scientific and Technological Cooperation of China (No.2015DFR10220)。
文摘The performance of existing maneuvering target tracking methods for highly maneuvering targets in cluttered environments is unsatisfactory.This paper proposes a hybrid-driven approach for tracking multiple highly maneuvering targets,leveraging the advantages of both data-driven and model-based algorithms.The time-varying constant velocity model is integrated into the Gaussian process(GP)of online learning to improve the performance of GP prediction.This integration is further combined with a generalized probabilistic data association algorithm to realize multi-target tracking.Through the simulations,it has been demonstrated that the hybrid-driven approach exhibits significant performance improvements in comparison with widely used algorithms such as the interactive multi-model method and the data-driven GP motion tracker.
基金the Youth Science and Technology Foundection of University of Electronic Science andTechnology of China (JX0622).
文摘In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.
基金ScientificResearchFoundationfortheReturnedOverseaChineseScholars State EducationMinistry
文摘An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved.
基金National Natural Science Foundation of China (60975028)National High-tech Research and Development Program (2009AA112203)+1 种基金Fundamental Research Funds for the Central Universities (CHD2009JC037)Natural Science Basic Research Plan in Shaanxi Province (2006F12)
文摘An improved particle filtering(IPF) is presented to perform maneuvering target tracking in dense clutter.The proposed filter uses several efficient variance reduction methods to combat particle degeneracy,low mode prior probabilities and measure-ment-origin uncertainty.Within the framework of a hybrid state estimation,each particle samples a discrete mode from its poste-rior distribution and the continuous state variables are approximated by a multivariate Gaussian mixture that is updated by an unscented Kalman filtering(UKF).The uncertainty of measurement origin is solved by Monte Carlo probabilistic data associa-tion method where the distribution of interest is approximated by particle filtering and UKF.Correct data association and precise behavior mode detection are successfully achieved by the proposed method in the environment with heavy clutter and very low mode prior probability.The performance of the proposed filter is examined and compared by Monte Carlo simulation over typical target scenario for various clutter densities.The simulation results show the effectiveness of the proposed filter.
基金Supported by the National Natural Science Foundation of China (Grant No. 60402033)
文摘In centralized multisensor tracking systems, there are out-of-sequence measurements (OOSMs) frequently arising due to different time delays in communication links and varying pre-processing times at the sensor. Such OOSM arrival can induce the "negative-time measurement update" problem, which is quite common in real mulUsensor tracking systems. The A1 optimal update algorithm with OOSM is presented by Bar-Shalom for one-step case. However, this paper proves that the optimality of A1 algorithm is lost in direct discrete-time model (DDM) of the process noise, it holds true only in discreUzed continuous-time model (DCM). One better OOSM filtering algorithm for DDM case is presented. Also, another new optimal OOSM filtering algorithm, which is independent of the discrete time model of the process noise, is presented here. The performance of the two new algorithms is compared with that of A1 algorithm by Monte Carlo simulations. The effectiveness and correctness of the two proposed algorithms are validated by analysis and simulation results.