Let ■Ω=Γ=Γ<sub>1</sub>+Γ<sub>2</sub> (see Fig.1),meas(Γ<sub>1</sub>)】0,V={v|v∈H<sup>1</sup>(Ω),v|Γ<sub>1</sub>=0},and V<sub>0</sub&g...Let ■Ω=Γ=Γ<sub>1</sub>+Γ<sub>2</sub> (see Fig.1),meas(Γ<sub>1</sub>)】0,V={v|v∈H<sup>1</sup>(Ω),v|Γ<sub>1</sub>=0},and V<sub>0</sub>={ω|Δω=h in Ω,ω|Γ=0,(?)h∈V}.Let V<sub>0</sub>′=thedual space of V<sub>0</sub>,a(u,v)=∫<sub>Ω</sub>▽u·▽Δvdx,and F(v)=∫<sub>Ω</sub> fvdx+∫<sub>Γ<sub>2</sub></sub>g1Δvds-∫<sub>Γ</sub>g2(?)ds,f∈V′<sub>0</sub>,g1∈H<sup>-(1/2)</sup>(Γ<sub>2</sub>),g2∈H<sup>-(3/2)</sup>(Γ).Consider the variational problem:find u ∈ V such thata(u,v)=F(v),(?)v∈V<sub>0</sub>. (1)Using Tartar’s lemma,we prove that for problem (1) there exists a unique展开更多
基金This research was supported by the National Natural Science Foundation of China
文摘Let ■Ω=Γ=Γ<sub>1</sub>+Γ<sub>2</sub> (see Fig.1),meas(Γ<sub>1</sub>)】0,V={v|v∈H<sup>1</sup>(Ω),v|Γ<sub>1</sub>=0},and V<sub>0</sub>={ω|Δω=h in Ω,ω|Γ=0,(?)h∈V}.Let V<sub>0</sub>′=thedual space of V<sub>0</sub>,a(u,v)=∫<sub>Ω</sub>▽u·▽Δvdx,and F(v)=∫<sub>Ω</sub> fvdx+∫<sub>Γ<sub>2</sub></sub>g1Δvds-∫<sub>Γ</sub>g2(?)ds,f∈V′<sub>0</sub>,g1∈H<sup>-(1/2)</sup>(Γ<sub>2</sub>),g2∈H<sup>-(3/2)</sup>(Γ).Consider the variational problem:find u ∈ V such thata(u,v)=F(v),(?)v∈V<sub>0</sub>. (1)Using Tartar’s lemma,we prove that for problem (1) there exists a unique