A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task sp...A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies.展开更多
Trajectory tracking control of space robots in task space is of great importance to space missions, which require on-orbit manipulations. This paper focuses on position and attitude tracking control of a tree-floating...Trajectory tracking control of space robots in task space is of great importance to space missions, which require on-orbit manipulations. This paper focuses on position and attitude tracking control of a tree-floating space robot in task space. Since nei- ther the nonlinear terms and parametric uncertainties of the dynamic model, nor the external disturbances are known, an adap- tive radial basis function network based nonsingular terminal sliding mode (RBF-NTSM) control method is presented. The proposed algorithm combines the nonlinear sliding manifold with the radial basis function to improve control performance. Moreover, in order to account for actuator physical constraints, a constrained adaptive RBF-NTSM, which employs a RBF network to compensate for the limited input is developed. The adaptive updating laws acquired by Lyapunov approach guar- antee the global stability of the control system and suppress chattering problems. Two examples are provided using a six-link free-floating space robot. Simulation results clearly demonstrate that the proposed constrained adaptive RBF-NTSM control method performs high precision task based on incomplete dynamic model of the space robots. In addition, the control errors converge faster and the chattering is eliminated comparing to traditional sliding mode control.展开更多
This paper deals with a flexible macro-micro manipulator system, which includes a long flexible manipulator and a relatively short rigid manipulator attached to the tip of the macro manipulator. A flexible macro manip...This paper deals with a flexible macro-micro manipulator system, which includes a long flexible manipulator and a relatively short rigid manipulator attached to the tip of the macro manipulator. A flexible macro manipulator possesses the advantages of wide operating range, high speed, and low energy consumption, but the disadvantage of a low tracking precision. The macro-micro manipulator system improves tracking performance by compensating for the endpoint tracking error while maintaining the advantages of the flexible macro manipulator. A trajectory planning scheme was built utilizing the task space division method. The division point is chosen to optimize the error compensation and energy consumption for the whole system. Then movements of the macro-micro manipulator can be determined using separate inverse kinematic models. Simulation results for a planar 4-DOF macro-micro manipulator system are presented to show the effectiveness of the control system.展开更多
As a well-explored template that captures the essential dynamical behaviors of legged locomotion on sagittal plane,the spring-loaded inverted pendulum(SLIP)model has been extensively employed in both biomechanical stu...As a well-explored template that captures the essential dynamical behaviors of legged locomotion on sagittal plane,the spring-loaded inverted pendulum(SLIP)model has been extensively employed in both biomechanical study and robotics research.Aiming at fully leveraging the merits of the SLIP model to generate the adaptive trajectories of the center of mass(CoM)with maneuverability,this study presents a novel two-layered sagittal SLIP-anchored(SSA)task space control for a monopode robot to deal with terrain irregularity.This work begins with an analytical investigation of sagittal SLIP dynamics by deriving an approximate solution with satisfactory apex prediction accuracy,and a two-layered SSA task space controller is subsequently developed for the monopode robot.The higher layer employs an analytical approximate representation of the sagittal SLIP model to form a deadbeat controller,which generates an adaptive reference trajectory for the CoM.The lower layer enforces the monopode robot to reproduce a generated CoM movement by using a task space controller to transfer the reference CoM commands into joint torques of the multi-degree of freedom monopode robot.Consequently,an adaptive hopping behavior is exhibited by the robot when traversing irregular terrain.Simulation results have demonstrated the effectiveness of the proposed method.展开更多
A free-flying space robot will accomplish manufacturing, assembling and repair instead of astronauts in the future unmanned space flight hbecause of its flexible maneuverability in space. This paper presents a task pl...A free-flying space robot will accomplish manufacturing, assembling and repair instead of astronauts in the future unmanned space flight hbecause of its flexible maneuverability in space. This paper presents a task planning algorithm of retrieving invalid satellite for free-fiving space robot. First we discuss kinematics model and deduct cinematics equations of dual-arm space robot. Then the process of retrieving an invalid satellite, which is divided into eleven motion procedures. At the same time, we have developed a free-flying space robot task planning simulation system and the experimental results show that this algorithm is feasible and correct.展开更多
基金supported by the National Basic Research Program of China (973 Program) (No.2009CB320601)National Natural Science Foundationof China (No.60534010)+1 种基金the Funds for Creative Research Groups of China (No.60521003)the 111 Project (No.B08015)
文摘A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies.
文摘Trajectory tracking control of space robots in task space is of great importance to space missions, which require on-orbit manipulations. This paper focuses on position and attitude tracking control of a tree-floating space robot in task space. Since nei- ther the nonlinear terms and parametric uncertainties of the dynamic model, nor the external disturbances are known, an adap- tive radial basis function network based nonsingular terminal sliding mode (RBF-NTSM) control method is presented. The proposed algorithm combines the nonlinear sliding manifold with the radial basis function to improve control performance. Moreover, in order to account for actuator physical constraints, a constrained adaptive RBF-NTSM, which employs a RBF network to compensate for the limited input is developed. The adaptive updating laws acquired by Lyapunov approach guar- antee the global stability of the control system and suppress chattering problems. Two examples are provided using a six-link free-floating space robot. Simulation results clearly demonstrate that the proposed constrained adaptive RBF-NTSM control method performs high precision task based on incomplete dynamic model of the space robots. In addition, the control errors converge faster and the chattering is eliminated comparing to traditional sliding mode control.
基金the National Natural Science Foundation of China (No. 60305008)
文摘This paper deals with a flexible macro-micro manipulator system, which includes a long flexible manipulator and a relatively short rigid manipulator attached to the tip of the macro manipulator. A flexible macro manipulator possesses the advantages of wide operating range, high speed, and low energy consumption, but the disadvantage of a low tracking precision. The macro-micro manipulator system improves tracking performance by compensating for the endpoint tracking error while maintaining the advantages of the flexible macro manipulator. A trajectory planning scheme was built utilizing the task space division method. The division point is chosen to optimize the error compensation and energy consumption for the whole system. Then movements of the macro-micro manipulator can be determined using separate inverse kinematic models. Simulation results for a planar 4-DOF macro-micro manipulator system are presented to show the effectiveness of the control system.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51605115)State Key Laboratory of Robotics and System(Self-Planned Task No.SKLRS201719A)+1 种基金Heilongjiang Postdoctoral Financial Assistance(Grant No.LBH-Z16083)Natural Science Foundation of Heilongjiang Province(Grant No.QC2017052).
文摘As a well-explored template that captures the essential dynamical behaviors of legged locomotion on sagittal plane,the spring-loaded inverted pendulum(SLIP)model has been extensively employed in both biomechanical study and robotics research.Aiming at fully leveraging the merits of the SLIP model to generate the adaptive trajectories of the center of mass(CoM)with maneuverability,this study presents a novel two-layered sagittal SLIP-anchored(SSA)task space control for a monopode robot to deal with terrain irregularity.This work begins with an analytical investigation of sagittal SLIP dynamics by deriving an approximate solution with satisfactory apex prediction accuracy,and a two-layered SSA task space controller is subsequently developed for the monopode robot.The higher layer employs an analytical approximate representation of the sagittal SLIP model to form a deadbeat controller,which generates an adaptive reference trajectory for the CoM.The lower layer enforces the monopode robot to reproduce a generated CoM movement by using a task space controller to transfer the reference CoM commands into joint torques of the multi-degree of freedom monopode robot.Consequently,an adaptive hopping behavior is exhibited by the robot when traversing irregular terrain.Simulation results have demonstrated the effectiveness of the proposed method.
文摘A free-flying space robot will accomplish manufacturing, assembling and repair instead of astronauts in the future unmanned space flight hbecause of its flexible maneuverability in space. This paper presents a task planning algorithm of retrieving invalid satellite for free-fiving space robot. First we discuss kinematics model and deduct cinematics equations of dual-arm space robot. Then the process of retrieving an invalid satellite, which is divided into eleven motion procedures. At the same time, we have developed a free-flying space robot task planning simulation system and the experimental results show that this algorithm is feasible and correct.