期刊文献+
共找到7,603篇文章
< 1 2 250 >
每页显示 20 50 100
Time series prediction of reservoir bank landslide failure probability considering the spatial variability of soil properties 被引量:2
1
作者 Luqi Wang Lin Wang +3 位作者 Wengang Zhang Xuanyu Meng Songlin Liu Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3951-3960,共10页
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab... Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models. 展开更多
关键词 Machine learning(ML) Reservoir bank landslide Spatial variability time series prediction Failure probability
下载PDF
Study on time effect and prediction model of shear strength of root-soil complex under dry-wet cycle 被引量:1
2
作者 Zhengjun Mao Xu Ma +4 位作者 Yuncen Liu Mimi Geng Yanshan Tian Jiewen Sun Zhijie Yang 《Biogeotechnics》 2024年第2期54-67,共14页
Triaxial compression tests were conducted on the alfalfa root-loess complex at different growthperiods obtained through artificial planting.The research focused on analyzing the time variation law of the shear strengt... Triaxial compression tests were conducted on the alfalfa root-loess complex at different growthperiods obtained through artificial planting.The research focused on analyzing the time variation law of the shear strength index and deformation index of the alfalfa root-loess complex under dry-wet cycles.Additionally,the time effect of the shear strength index of the alfalfa root-loess complex under dry-wet cycles was analyzed and its prediction model was proposed.The results show that the PG-DWC(dry-wet cycle caused by plant water management during plant growth period)causes the peak strength of plain soil to change in a"V"shape with the increase of growth period,and the peak strength of alfalfa root-loess complex is higher than that of plain soil at the same growth period.The deterioration of the peak strength of alfalfa root-loess complex in the same growth period is aggravated with the increase of drying and wetting cycles.Compared with the 0 days growth period,the effective cohesion of alfalfa root-loess complex under different dry-wet cycles maximum increase rate is at the 180 days,which are 33.88%,46.05%,30.12%and 216.02%,respectively.When the number of dry-wet cycles is constant,the effective cohesion of the alfalfa root-loess complex overall increases with the growth period.However,it gradually decreases comparedwith the previous growth period,and the minimum increase rate are all at the 180 days.For the same growth period,the effective cohesion of the alfalfa root-loess complex decreases with the increase of the number of dry-wet cycles.This indicates that EC-DWC(the dry-wet cycles caused by extreme natural conditions such as continuous rain)have a detrimental effect on the time effect of the shear strength of the alfalfa root-loess complex.Finally,based on the formula of total deterioration,a prediction model for the shear strength of the alfalfa root-loess complex under dry-wet cycles was proposed,which exhibits high prediction accuracy.The research results provide useful guidance for the understanding of mechanical behavior and structural damage evolution of root-soil composite. 展开更多
关键词 Dry-wet cycle Root-soil complex Shear strength time effect prediction model AlfalfaLoess
下载PDF
A Time Series Short-Term Prediction Method Based on Multi-Granularity Event Matching and Alignment
3
作者 Haibo Li Yongbo Yu +1 位作者 Zhenbo Zhao Xiaokang Tang 《Computers, Materials & Continua》 SCIE EI 2024年第1期653-676,共24页
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g... Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method. 展开更多
关键词 time series short-term prediction multi-granularity event ALIGNMENT event matching
下载PDF
Deep Learning for Financial Time Series Prediction:A State-of-the-Art Review of Standalone and HybridModels
4
作者 Weisi Chen Walayat Hussain +1 位作者 Francesco Cauteruccio Xu Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期187-224,共38页
Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep lear... Financial time series prediction,whether for classification or regression,has been a heated research topic over the last decade.While traditional machine learning algorithms have experienced mediocre results,deep learning has largely contributed to the elevation of the prediction performance.Currently,the most up-to-date review of advanced machine learning techniques for financial time series prediction is still lacking,making it challenging for finance domain experts and relevant practitioners to determine which model potentially performs better,what techniques and components are involved,and how themodel can be designed and implemented.This review article provides an overview of techniques,components and frameworks for financial time series prediction,with an emphasis on state-of-the-art deep learning models in the literature from2015 to 2023,including standalonemodels like convolutional neural networks(CNN)that are capable of extracting spatial dependencies within data,and long short-term memory(LSTM)that is designed for handling temporal dependencies;and hybrid models integrating CNN,LSTM,attention mechanism(AM)and other techniques.For illustration and comparison purposes,models proposed in recent studies are mapped to relevant elements of a generalized framework comprised of input,output,feature extraction,prediction,and related processes.Among the state-of-the-artmodels,hybrid models like CNNLSTMand CNN-LSTM-AM in general have been reported superior in performance to stand-alone models like the CNN-only model.Some remaining challenges have been discussed,including non-friendliness for finance domain experts,delayed prediction,domain knowledge negligence,lack of standards,and inability of real-time and highfrequency predictions.The principal contributions of this paper are to provide a one-stop guide for both academia and industry to review,compare and summarize technologies and recent advances in this area,to facilitate smooth and informed implementation,and to highlight future research directions. 展开更多
关键词 Financial time series prediction convolutional neural network long short-term memory deep learning attention mechanism FINANCE
下载PDF
AFSTGCN:Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
5
作者 Yuteng Xiao Kaijian Xia +5 位作者 Hongsheng Yin Yu-Dong Zhang Zhenjiang Qian Zhaoyang Liu Yuehan Liang Xiaodan Li 《Digital Communications and Networks》 SCIE CSCD 2024年第2期292-303,共12页
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an... The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models. 展开更多
关键词 Adaptive adjacency matrix Digital twin Graph convolutional network Multivariate time series prediction Spatial-temporal graph
下载PDF
Prediction of three-dimensional ocean temperature in the South China Sea based on time series gridded data and a dynamic spatiotemporal graph neural network
6
作者 Feng Nan Zhuolin Li +3 位作者 Jie Yu Suixiang Shi Xinrong Wu Lingyu Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期26-39,共14页
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean... Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales. 展开更多
关键词 dynamic associations three-dimensional ocean temperature prediction graph neural network time series gridded data
下载PDF
A prediction comparison between univariate and multivariate chaotic time series 被引量:3
7
作者 王海燕 朱梅 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期414-417,共4页
The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic tim... The methods to determine time delays and embedding dimensions in the phase space delay reconstruction of multivariate chaotic time series are proposed. Three nonlinear prediction methods of multivariate chaotic time series including local mean prediction, local linear prediction and BP neural networks prediction are considered. The simulation results obtained by the Lorenz system show that no matter what nonlinear prediction method is used, the prediction error of multivariate chaotic time series is much smaller than the prediction error of univariate time series, even if half of the data of univariate time series are used in multivariate time series. The results also verify that methods to determine the time delays and the embedding dimensions are correct from the view of minimizing the prediction error. 展开更多
关键词 multivariate chaotic time series phase space reconstruction prediction neural networks
下载PDF
Data-augmented landslide displacement prediction using generative adversarial network 被引量:1
8
作者 Qi Ge Jin Li +2 位作者 Suzanne Lacasse Hongyue Sun Zhongqiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4017-4033,共17页
Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limit... Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models,such as state-of-the-art machine learning(ML)models.To address these challenges,this study proposes a data augmentation framework that uses generative adversarial networks(GANs),a recent advance in generative artificial intelligence(AI),to improve the accuracy of landslide displacement prediction.The framework provides effective data augmentation to enhance limited datasets.A recurrent GAN model,RGAN-LS,is proposed,specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data.A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data.Then,the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory(LSTM)networks and particle swarm optimization-support vector machine(PSO-SVM)models for landslide displacement prediction tasks.Results on two landslides in the Three Gorges Reservoir(TGR)region show a significant improvement in LSTM model prediction performance when trained on augmented data.For instance,in the case of the Baishuihe landslide,the average root mean square error(RMSE)increases by 16.11%,and the mean absolute error(MAE)by 17.59%.More importantly,the model’s responsiveness during mutational stages is enhanced for early warning purposes.However,the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM.Further analysis indicates that an optimal synthetic-to-real data ratio(50%on the illustration cases)maximizes the improvements.This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results.By using the powerful generative AI approach,RGAN-LS can generate high-fidelity synthetic landslide data.This is critical for improving the performance of advanced ML models in predicting landslide displacement,particularly when there are limited training data.Additionally,this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas. 展开更多
关键词 Machine learning(ML) time series Generative adversarial network(GAN) Three Gorges reservoir(TGR) Landslide displacement prediction
下载PDF
Local polynomial prediction method of multivariate chaotic time series and its application 被引量:1
9
作者 方芬 王海燕 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期229-232,共4页
To improve the prediction accuracy of chaotic time series, a new methodformed on the basis of local polynomial prediction is proposed. The multivariate phase spacereconstruction theory is utilized to reconstruct the p... To improve the prediction accuracy of chaotic time series, a new methodformed on the basis of local polynomial prediction is proposed. The multivariate phase spacereconstruction theory is utilized to reconstruct the phase space firstly, and on its basis, apolynomial function is applied to construct the prediction model, then the parameters of the modelaccording to the data matrix built with the embedding dimensions are estimated and a one-stepprediction value is calculated. An estimate and one-step prediction value is calculated. Finally,the mean squared root statistics are used to estimate the prediction effect. The simulation resultsobtained by the Lorenz system and the prediction results of the Shanghai composite index show thatthe local polynomial prediction errors of the multivariate chaotic time series are small and itsprediction accuracy is much higher than that of the univariate chaotic time series. 展开更多
关键词 chaotic time series phase space reconstruction local polynomial prediction stock market
下载PDF
New prediction of chaotic time series based on local Lyapunov exponent 被引量:9
10
作者 张勇 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期191-197,共7页
A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in stat... A new method of predicting chaotic time series is presented based on a local Lyapunov exponent, by quantitatively measuring the exponential rate of separation or attraction of two infinitely close trajectories in state space. After recon- structing state space from one-dimensional chaotic time series, neighboring multiple-state vectors of the predicting point are selected to deduce the prediction formula by using the definition of the locaI Lyapunov exponent. Numerical simulations are carded out to test its effectiveness and verify its higher precision over two older methods. The effects of the number of referential state vectors and added noise on forecasting accuracy are also studied numerically. 展开更多
关键词 chaotic time series prediction of chaotic time series local Lyapunov exponent least squaresmethod
下载PDF
Real-time multi-step prediction control for BP network with delay 被引量:8
11
作者 张吉礼 欧进萍 于达仁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2000年第2期82-86,共5页
Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network i... Real time multi step prediction of BP network based on dynamical compensation of system characteristics is suggested by introducing the first and second derivatives of the system and network outputs into the network input layer, and real time multi step prediction control is proposed for the BP network with delay on the basis of the results of real time multi step prediction, to achieve the simulation of real time fuzzy control of the delayed time system. 展开更多
关键词 DELAYED time system multi STEP prediction BP network COMPENSATION of DYNAMICAL characteristics fuzzy control simulation
下载PDF
Fault Prediction Based on Dynamic Model and Grey Time Series Model in Chemical Processes 被引量:13
12
作者 田文德 胡明刚 李传坤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第6期643-650,共8页
This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is intro... This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction. 展开更多
关键词 fault prediction dynamic model grey model time series model
下载PDF
Experimental investigation on synergetic prediction of granite rockburst using rock failure time and acoustic emission energy 被引量:11
13
作者 WANG Chun-lai CAO Cong +3 位作者 LI Chang-feng CHUAI Xiao-sheng ZHAO Guang-ming LU Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1262-1273,共12页
The frequent occurrence of rockburst and the difficulty in predicting were considered in deep engineering and underground engineering.In this work,laboratory experiments on rockburst under true triaxial conditions wer... The frequent occurrence of rockburst and the difficulty in predicting were considered in deep engineering and underground engineering.In this work,laboratory experiments on rockburst under true triaxial conditions were carried out with granite samples.Combined with the deformation characteristics of granite,acoustic emission(AE)technology was well applied in revealing the evolution law of micro-cracks in the process of rockburst.Based on the comprehensive analysis of acoustic emission parameters such as impact,ringing and energy,the phased characteristics of crack propagation and damage evolution in granite were obtained,which were consistent with the stages of rock deformation and failure.Subsequently,based on the critical point theory,the accelerated release characteristics of acoustic emission energy during rockburst were analyzed.Based on the damage theory,the damage evolution model of rock under different loading conditions was proposed,and the prediction interval of rock failure time was ascertained concurrently.Finally,regarding damage as an intermediate variable,the synergetic prediction model of rock failure time was constructed.The feasibility and validity of model were verified. 展开更多
关键词 ROCKBURST acoustic emission energy damage failure time synergetic prediction
下载PDF
Time series prediction using wavelet process neural network 被引量:4
14
作者 丁刚 钟诗胜 李洋 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第6期1998-2003,共6页
In the real world, the inputs of many complicated systems are time-varying functions or processes. In order to predict the outputs of these systems with high speed and accuracy, this paper proposes a time series predi... In the real world, the inputs of many complicated systems are time-varying functions or processes. In order to predict the outputs of these systems with high speed and accuracy, this paper proposes a time series prediction model based on the wavelet process neural network, and develops the corresponding learning algorithm based on the expansion of the orthogonal basis functions. The effectiveness of the proposed time series prediction model and its learning algorithm is proved by the Macke-Glass time series prediction, and the comparative prediction results indicate that the proposed time series prediction model based on the wavelet process neural network seems to perform well and appears suitable for using as a good tool to predict the highly complex nonlinear time series. 展开更多
关键词 time series prediction wavelet process neural network learning algorithm
下载PDF
Bus Arrival Time Prediction Based on Mixed Model 被引量:4
15
作者 Jinglin Li Jie Gao +1 位作者 Yu Yang Heran Wei 《China Communications》 SCIE CSCD 2017年第5期38-47,共10页
How to predict the bus arrival time accurately is a crucial problem to be solved in Internet of Vehicle. Existed methods cannot solve the problem effectively for ignoring the traffic delay jitter. In this paper,a thre... How to predict the bus arrival time accurately is a crucial problem to be solved in Internet of Vehicle. Existed methods cannot solve the problem effectively for ignoring the traffic delay jitter. In this paper,a three-stage mixed model is proposed for bus arrival time prediction. The first stage is pattern training. In this stage,the traffic delay jitter patterns(TDJP)are mined by K nearest neighbor and K-means in the historical traffic time data. The second stage is the single-step prediction,which is based on real-time adjusted Kalman filter with a modification of historical TDJP. In the third stage,as the influence of historical law is increasing in long distance prediction,we combine the single-step prediction dynamically with Markov historical transfer model to conduct the multi-step prediction. The experimental results show that the proposed single-step prediction model performs better in accuracy and efficiency than short-term traffic flow prediction and dynamic Kalman filter. The multi-step prediction provides a higher level veracity and reliability in travel time forecasting than short-term traffic flow and historical traffic pattern prediction models. 展开更多
关键词 bus arrival time prediction traffic delay jitter pattern internet of vehicle
下载PDF
Performance Degradation Prediction of Proton Exchange Membrane Fuel Cell Based on CEEMDAN-KPCA and DA-GRU Networks 被引量:2
16
作者 Tingwei Zhao Juan Wang +2 位作者 Jiangxuan Che Yingjie Bian Tianyu Chen 《Instrumentation》 2024年第1期51-61,共11页
In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(C... In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(CEEMDAN),kernel principal component analysis(KPCA)and dual attention mechanism gated recurrent unit neural network(DA-GRU)was proposed.CEEMDAN and KPCA were used to extract the input feature data sequence,reduce the influence of random factors,and capture essential feature components to reduce the model complexity.The DA-GRU network helps to learn the feature mapping relationship of data in long time series and predict the changing trend of performance degradation data more accurately.The actual aging experimental data verify the performance of the CKDG method.The results show that under the steady-state condition of 20%training data prediction,the CKDA method can reduce the root mean square error(RMSE)by 52.7%and 34.6%,respectively,compared with the traditional LSTM and GRU neural networks.Compared with the simple DA-GRU network,RMSE is reduced by 15%,and the degree of over-fitting is reduced,which has higher accuracy.It also shows excellent prediction performance under the dynamic condition data set and has good universality. 展开更多
关键词 proton exchange membrane fuel cell dual-attention gated recurrent unit data-driven model time series prediction
下载PDF
Application of uncertainty reasoning based on cloud model in time series prediction 被引量:11
17
作者 张锦春 胡谷雨 《Journal of Zhejiang University Science》 EI CSCD 2003年第5期578-583,共6页
Time series prediction has been successfully used in several application areas, such as meteoro-logical forecasting, market prediction, network traffic forecasting, etc. , and a number of techniques have been develop... Time series prediction has been successfully used in several application areas, such as meteoro-logical forecasting, market prediction, network traffic forecasting, etc. , and a number of techniques have been developed for modeling and predicting time series. In the traditional exponential smoothing method, a fixed weight is assigned to data history, and the trend changes of time series are ignored. In this paper, an uncertainty reasoning method, based on cloud model, is employed in time series prediction, which uses cloud logic controller to adjust the smoothing coefficient of the simple exponential smoothing method dynamically to fit the current trend of the time series. The validity of this solution was proved by experiments on various data sets. 展开更多
关键词 time series prediction Cloud model Simple expo nential smoothing method
下载PDF
Prediction of chaotic time series based on modified minimax probability machine regression 被引量:2
18
作者 孙建成 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第11期3262-3270,共9页
Long-term prediction of chaotic time series is very difficult,for the Chaos restricts predictability.in this paper a new method is studied to model and predict chaotic time series based on minimax probability machine ... Long-term prediction of chaotic time series is very difficult,for the Chaos restricts predictability.in this paper a new method is studied to model and predict chaotic time series based on minimax probability machine regression (MPMR). Since the positive global Lyapunov exponents lead the errors to increase exponentially in modelling the chaotic time series, a weighted term is introduced to compensate a cost function. Using mean square error (MSE) and absolute error (AE) as a criterion, simulation results show that the proposed method is more effective and accurate for multistep prediction. It can identify the system characteristics quite well and provide a new way to make long-term predictions of the chaotic time series. 展开更多
关键词 minimax probability machine regression (MPMR) time series prediction CHAOS
下载PDF
Real-time crash prediction on freeways using data mining and emerging techniques 被引量:4
19
作者 Jinming You Junhua Wang Jingqiu Guo 《Journal of Modern Transportation》 2017年第2期116-123,共8页
Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with... Recent advances in intelligent transportation system allow traffic safety studies to extend from historic data-based analyses to real-time applications. The study presents a new method to predict crash likelihood with traffic data collected by discrete loop detectors as well as the web-crawl weather data. Matched case-control method and support vector machines (SVMs) technique were employed to identify the risk status. The adaptive synthetic over-sampling technique was applied to solve the imbalanced dataset issues. Random forest technique was applied to select the contributing factors and avoid the over-fitting issues. The results indicate that the SVMs classifier could successfully classify 76.32% of the crashes on the test dataset and 87.52% of the crashes on the overall dataset, which were relatively satisfactory compared with the results of the previous studies. Compared with the SVMs classifier without the data, the SVMs classifier with the web-crawl weather data increased the crash prediction accuracy by 1.32% and decreased the false alarm rate by 1.72%, showing the potential value of the massive web weather data. Mean impact value method was employed to evaluate the variable effects, and the results are identical with the results of most of previous studies. The emerging technique based on the discrete traffic data and web weather data proves to be more applicable on real- time safety management on freeways. 展开更多
关键词 Crash prediction detectors Web-crawl data Real time - Discrete loop Support vector machines
下载PDF
STUDY ON THE PREDICTION METHOD OF LOW-DIMENSION TIME SERIES THAT ARISE FROM THE INTRINSIC NONLINEAR DYNAMICS 被引量:2
20
作者 MA Junhai(马军海) +1 位作者 CHEN Yushu(陈予恕) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第5期501-509,共9页
The prediction methods and its applications of the nonlinear dynamic systems determined from chaotic time series of low-dimension are discussed mainly. Based on the work of the foreign researchers, the chaotic time se... The prediction methods and its applications of the nonlinear dynamic systems determined from chaotic time series of low-dimension are discussed mainly. Based on the work of the foreign researchers, the chaotic time series in the phase space adopting one kind of nonlinear chaotic model were reconstructed. At first, the model parameters were estimated by using the improved least square method. Then as the precision was satisfied, the optimization method was used to estimate these parameters. At the end by using the obtained chaotic model, the future data of the chaotic time series in the phase space was predicted. Some representative experimental examples were analyzed to testify the models and the algorithms developed in this paper. ne results show that if the algorithms developed here are adopted, the parameters of the corresponding chaotic model will be easily calculated well and true. Predictions of chaotic series in phase space make the traditional methods change from outer iteration to interpolations. And if the optimal model rank is chosen, the prediction precision will increase notably. Long term superior predictability of nonlinear chaotic models is proved to be irrational and unreasonable. 展开更多
关键词 NONLINEAR chaotic model parameter identification time series prediction
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部