期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Extension of the gurson model accounting for the void size effect
1
作者 JieWen Keh-ChihHwang YonggangHuang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第2期142-150,共9页
A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model. The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the ... A continuum model of solids with cylindrical microvoids is proposed based on the Taylor dislocation model. The model is an extension of Gurson model in the sense that the void size effect is accounted for. Beside the void volume fraction f, the intrinsic material length l becomes a parameter representing voids since the void size comes into play in the Gurson model. Approximate yield functions in analytic forms are suggested for both solids with cylindrical microvoids and with spherical microvoids. The application to uniaxial tension curves shows a precise agreement between the approximate analytic yield function and the exact parametric form of integrals. 展开更多
关键词 Void size effect Gurson model taylor dislocation model Yield condition
下载PDF
The indenter tip radius effect in micro- and nanoindentation hardness experiments 被引量:5
2
作者 Fan Zhang Yonggang Huang Keh-Chih Hwang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期1-8,共8页
Nix and Gao established an important relation between the microindentation hardness and indentation depth. Such a relation has been verified by many microindentation experiments (indentation depths in the micrometer ... Nix and Gao established an important relation between the microindentation hardness and indentation depth. Such a relation has been verified by many microindentation experiments (indentation depths in the micrometer range), but it does not always hold in nanoindentation experiments (indentation depths approaching the nanometer range). Indenter tip radius effect has been proposed by Qu et al. and others as possibly the main factor that causes the deviation from Nix and Gao's relationship. We have developed an indentation model for micro- and nanoindentation, which accounts for two indenter shapes, a sharp, conical indenter and a conical indenter with a spherical tip. The analysis is based on the conventional theory of mechanism-based strain gradient plasticity established from the Taylor dislocation model to account for the effect of geometrically necessary dislocations. The comparison between numerical result and Feng and Nix's experimental data shows that the indenter tip radius effect indeed causes the deviation from Nix-Gao relation, but it seems not be the main factor. 展开更多
关键词 taylor dislocation model Strain gradient plasticity Indentation Nix-Gao relation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部