The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafti...The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafting polymerization under controlled experimental conditions.The dynamic changes of CO_(2)bubbles flowing along the microchannel were captured by a high-speed video camera mounted on a stereo microscope,whilst a unit cell model was employed to theoretically investigate the gas-liquid mass transfer dynamics.We quantitatively characterized the effects of wall wettability,specifically the contact angle,on the formation mechanism of gas bubbles and mass transfer process experimentally.The results revealed that the gas bubble velocity,the overall volumetric liquid phase mass transfer coefficients(kLa),and the specific interfacial area(a)all increased with the increase of the contact angle.Conversely,gas bubble length and leakage flow decreased.Furthermore,we proposed a new modified model to predict the gas-liquid two-phase mass transfer performance,based on van Baten’s and Yao’s models.Our proposed model was observed to agree reasonably well with experimental observations.展开更多
The physical absorption of CO2 in water containing different types of particles was studied in a micro-channel operated under Taylor flow. The maximum enhancement factors of 1.43-2.15 were measured for activated carb...The physical absorption of CO2 in water containing different types of particles was studied in a micro-channel operated under Taylor flow. The maximum enhancement factors of 1.43-2.15 were measured for activated carbon (AcC) particles. The analysis shows that the enhancement effect can be attributed to the shuttle mechanism. Considering the separate contributions of mass transfer from bubble cap and liquid film, a heterogeneous enhance- ment model is developed. According to this model, the enhancement factors Ecap, EFilm and Eov are mainly determined by mass transfer coefficient gL (gL Cap and KL Film), adsorptive capacity of particles m, and coverage fraction of particles at gas-liquid interface (. With both effects of particle-to-interface adhesion and apparent viscosity included, the model nredicts the enhancement effect of AcC varticles reasonably well.展开更多
Axisymmetric Couette-Taylor flow between two concentric rotating cylinders was simulated numerically by the spectral method.First,stream function form of the Navier-Stokes equations which homogeneous boundary conditio...Axisymmetric Couette-Taylor flow between two concentric rotating cylinders was simulated numerically by the spectral method.First,stream function form of the Navier-Stokes equations which homogeneous boundary condition was given by introducing Couette flow.Second,the analytical expressions of the eigenfunction of the Stokes operator in the cylindrical gap region were given and its orthogonality was proved.The estimates of growth rate of the eigenvalue were presented.Finally,spectral Galerkin approximation of Couette-Taylor flow was discussed by introducing eigenfunctions of Stokes operator as basis of finite dimensional approximate subspaces.The existence,uniquence and convergence of spectral Galerkin approximation of nonsingular solution for the steady-state Navier-Stokes equations are proved.Moreover,the error estimates are given.Numerical result is presented.展开更多
The microchannel reactor is the most commonly used microreaction technology,an innovative reaction system developed in recent years.This study investigates the mass transfer behavior of a gas-liquid two‐phase Taylor ...The microchannel reactor is the most commonly used microreaction technology,an innovative reaction system developed in recent years.This study investigates the mass transfer behavior of a gas-liquid two‐phase Taylor flow in a microchannel by coupling the volume‐of‐fluid model and the species transport model.The concentration distribution and the volumetric mass transfer coefficient of the gas solute are determined and discussed in detail.The simulation results reveal that the double‐circulation flow influences the concentration distribution in the liquid slug.The highest value is observed at the bubble's surface and decreases rapidly along the vertical direction of the bubble.The increase of bubble velocity leads to a more apparent decreasing trend.The gas-liquid interface renewal rate of the bubble is accelerated with increasing bubble velocity,resulting in an increase in the average mass transfer rate in all regions of the bubble surface with an increase in bubble velocity.The results also indicate that the liquid film area contributes the most to the mass transfer behavior due to the most significant proportion and average mass transfer rate of the liquid film among the bubble.展开更多
In this paper, the flow patterns observed in horizontal Couette-Taylor flow(CTF) were correlated using dimensionless numbers. The analysis of the results showed that the structure of the flow was an outcome of inter...In this paper, the flow patterns observed in horizontal Couette-Taylor flow(CTF) were correlated using dimensionless numbers. The analysis of the results showed that the structure of the flow was an outcome of interaction between fluid inertia related to axial and rotational flows and gravitation. Therefore, the flow structures were correlated using axial and angular Reynolds numbers, and Archimedes number for the given value of gas-to-liquid flow ratio. Finally, the correlation for the prediction of the transition to the flow regime observed at high rotational speeds was proposed. The comparison with experiments carried out in the vertical CTF from the literature showed that this correlation can also be useful in the case of vertical flow.展开更多
Velocity field data were acquired for Taylor-Couette flow in the annulus gap between a rotating inner cylinder and a fixed concentric outer cylinder by particle image velocimetry. The flocculation efficiencies were al...Velocity field data were acquired for Taylor-Couette flow in the annulus gap between a rotating inner cylinder and a fixed concentric outer cylinder by particle image velocimetry. The flocculation efficiencies were also obtained in the same Taylor-Couette flow under the conditions corresponding to the velocity field measurement. It was shown that the flocculation efficiencies reach the maximum values due to the closed vortices in WVF and their contraction and expansion with time, but out of WVF range, the comparatively low flocculation efficiencies were obtained due to the no-closed vortices connected with each other.展开更多
The simplified flow of drilling process in the soil hardening or oil rig site was experimentally investigated. Two flow models were used. One is the concentric cylinders with helical protrusion at the inner cylinder. ...The simplified flow of drilling process in the soil hardening or oil rig site was experimentally investigated. Two flow models were used. One is the concentric cylinders with helical protrusion at the inner cylinder. The other is the concentric plain wall cylinders with axial flow. The radius ratio and aspect ratio of both models are the same with 0. 65 and 48,respectively. The mud is the typical fluid seen in the soil hardening processes. We used the water and the mud for the working fluid. We used the optical PIV for the water flow measurement and echo PIV for the mud flow. In case of the water study,the dominant vortical structures appeared in both the protrusion and plain model with axial flow.In case of mud flow,the vortices shown in the water model disappeared and the push and pull-up motion by the protrusion is dominant. We believe this information can be useful to understand the flow physics of drilling process in the complex fluid flow.展开更多
Since the classical investigation of the Taylor vortex by G. I. Taylor in 1923, many researchers have studied the Taylor vortex as one of the most important vortex types in flow. In this study, the inner cylinder is r...Since the classical investigation of the Taylor vortex by G. I. Taylor in 1923, many researchers have studied the Taylor vortex as one of the most important vortex types in flow. In this study, the inner cylinder is rotating, while the outer cylinder, which is concentric with the inner cylinder, is stationary. In addition, the measurement of the velocity distribution is carried out by the PIV (Particle Image Velocimetry) method. The radius of the inner cylinder is 20 mm, and that of the outer cylinder is 30 mm. In this study, Re = 650-1,200 is assumed. In the upper part of the apparatus, movable ends are fixed to the upper and lower sides of the cylinder to change the aspect ratio. The aspect ratio is defined as the ratio of cylinder height to gap distance. A servo motor to rotate the inner cylinder, a servo-motor control device, a servo amplifier for rotation speed control, and a YAG laser light source are installed in the apparatus. For the visualization of Taylor vortex flow, aluminum powder composed of scale like fine particles is used. As tracer particles used in the PIV method, fluorescent particles with a size of 48 Ixm were used. The governing equations are Navier-Stokes equations with cylindrical coordinates (r, θ, z) and the equations of continuity. Each physical value is nondimensionalized using the angular velocity of the inner cylinder as the representative velocity, and the radius difference between the inner and outer cylinders as the representative length. Discretization of the governing equations is based on the MAC method. The results of EFD and CFD (computational fluid dynamics) are compared. The mode bifurcation is observed, and the flow structure is investigated.展开更多
Infertility is often cited as one of the causes of a declining birthrate, which has become a serious social problem in recent years. Processes by which motile sperm can be safely and easily sorted are therefore import...Infertility is often cited as one of the causes of a declining birthrate, which has become a serious social problem in recent years. Processes by which motile sperm can be safely and easily sorted are therefore important for infertility treatment. Therefore, as a new sorting method, microfluidic sperm sorter using the microfluidic system has been developed. To improve more separation efficiency of this device, it is necessary to know the behaviors of motile sperm in the microchannel where the sperm undergo shear flow. The previous study implied the necessity of the modeling of motile sperm in the shear flow. In the present study, therefore, we experimentally investigated the behavior of the motile sperm in the Taylor-Couette flow using PTV (Particle Tracking Velocimetry) method. The experimental results showed that the ascent of the shear stress led to the increase in the sperm velocity, and the direction of the sperm velocity was opposite to that of the flow.展开更多
Chaotic mixing in a curved-square channel flow is studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient is imposed in the ...Chaotic mixing in a curved-square channel flow is studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient is imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flows. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In the present paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental and numerical results. We produced a micromixer model of the curved channel several centimeters long with square cross section of a few millimeters side. The secondary flow was measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. We also performed three-dimensional numerical simulations for the exactly same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is achieved for the case of De ≤ 0.1Tr, and that mixing efficiency changes according to the difference in inflow conditions. The flow is studied both experimentally and numerically, and both results agree with each other very well.展开更多
This paper investigates the magnetohydrodynamic (MHD) boundary layer flow of an incompressible upper-convected Maxwell (UCM) fluid over a porous stretching surface. Similarity transformations are used to reduce th...This paper investigates the magnetohydrodynamic (MHD) boundary layer flow of an incompressible upper-convected Maxwell (UCM) fluid over a porous stretching surface. Similarity transformations are used to reduce the governing partial differential equations into a kind of nonlinear ordinary differential equations. The nonlinear prob- lem is solved by using the successive Taylor series linearization method (STSLM). The computations for velocity components are carried out for the emerging parameters. The numerical values of the skin friction coefficient are presented and analyzed for various parameters of interest in the problem.展开更多
Chaotic mixing in three different types of curved-rectangular channels flow has been studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a p...Chaotic mixing in three different types of curved-rectangular channels flow has been studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient are imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flow. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In this paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental results and numerical ones. We produced three micromixer models of the curved channel, several centimeters long, with rectangular cross-section of a few millimeters side. The secondary flow is measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. Also we performed three-dimensional numerical simulations with the open source CFD solver, OpenFOAM, for the same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is obtained in the case of De ≤ 0.1 Tr, and it becomes more remarkable when the aspect ratio tends to large. And it is found that the mixing efficiency changes according to the aspect ratio and inflow condition.展开更多
The performance of laminar Taylor-Couette flow with different developed procedures is studied by the way of computational fluid dynamics (CFD) in steady state. In order to gain a group of developed procedure in CFD, a...The performance of laminar Taylor-Couette flow with different developed procedures is studied by the way of computational fluid dynamics (CFD) in steady state. In order to gain a group of developed procedure in CFD, a set of convergent solutions are used as the initial value of next boundary condition, and the new set of convergent solutions are regarded as developing from the previous steady state. Three groups of developed procedures are gained from the rotating speed series of inner cylinder, respectively from the gradual increase procedure (GIP), the gradual decrease procedure (GDP) and the sudden increase procedure (SIP). It is proved that the convergent solutions of fluid control equations are different when they are solved from laminar state with the same boundary condition, the same fluid property, the same mesh grid in CFD and the same business software except that the flow states have developed from the procedures of GDP, GIP and SIP. It is shown that the developed procedure could leave behind some information in the performance of the flow. In other words, the flow between concentric rotating cylinders has somewhat memory for the procedure of its history.展开更多
We investigate the onset and the decay of Taylor-Couette flow in finite cylinders, and we report the estimated time scales in the azimuthal section of the flow state transition between the super-critical state and the...We investigate the onset and the decay of Taylor-Couette flow in finite cylinders, and we report the estimated time scales in the azimuthal section of the flow state transition between the super-critical state and the sub-critical state by fitting the numerical result to the solution of the Stuart-Landau equation. The inner cylinder rotates, and the outer cylinder and both end walls of the cylinders are stationary. Near the end walls of the cylinders, the value of the time scale is small. In the inner region, the radial velocity component has a large time scale near the center of the vortices, while the axial velocity component has a large time scale between the vortices.展开更多
Taylor vortex flow between two concentric rotating cylinders with finite axial length includes various patterns of laminar and turbulent flows, and its behavior has attracted great interests. When mode bifurcation occ...Taylor vortex flow between two concentric rotating cylinders with finite axial length includes various patterns of laminar and turbulent flows, and its behavior has attracted great interests. When mode bifurcation occurs, quantitative parameters such as the volume-averaged energy change rapidly. It is important to visualize the behaviors of vortices. In this study, a three-dimensional visualization system with respect to time is devised. This system can change the viewpoint of flow visualization, and we can observe the track of a vortex from any point. The volume-averaged energy is projected to the track of the center of a vortex. The proposed system can help to investigate the relationship between the mode bifurcation process and the volume-averaged energy.展开更多
A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch imp...A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.展开更多
We have numerically and experimentally investigated the flow modes of Taylor-Couette system consisting of coaxial two cylinders with vertical axes. The inner cylinder rotates and the outer cylinder and the bottom end ...We have numerically and experimentally investigated the flow modes of Taylor-Couette system consisting of coaxial two cylinders with vertical axes. The inner cylinder rotates and the outer cylinder and the bottom end of the cylinders remain stationary. The upper top boundary is the free surface of the working liquid between the inner and outer cylinders and it contacts with the air. While this flow appears in fluid machinery and chemical reactors and includes industrial interests, it also contains problems of fluid mechanics, which is about the behavior of the free surface in the rotating field. In this paper, we concretely show the developments of the one cell mode flow and the three cell mode flow at a small aspect ratio. We also represent the bifurcation diagram of the flow at the moderate aspect ratio about 5.5. In the numerical simulation, the flow is rest in the initial state, and the inner cylinder is linearly or suddenly accelerated to attain a flow with a prescribed Reynolds number. When the acceleration of the inner cylinder is high, an imperfect bifurcation occurs and the flows of the secondary modes emerge. At high Reynolds numbers, the flow first has many vortices and then some of the vortices collapse and the final stable flow arises. The loci of the normal five cell mode, the anomalous six cell mode and the secondary seven cell mode are determined.展开更多
基金the financial supports from National Natural Science Foundation of China(21978250,22208278)Natural Science Foundation of Shandong Province(ZR2020KB013,ZR2020QE211,2019KJC012).
文摘The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafting polymerization under controlled experimental conditions.The dynamic changes of CO_(2)bubbles flowing along the microchannel were captured by a high-speed video camera mounted on a stereo microscope,whilst a unit cell model was employed to theoretically investigate the gas-liquid mass transfer dynamics.We quantitatively characterized the effects of wall wettability,specifically the contact angle,on the formation mechanism of gas bubbles and mass transfer process experimentally.The results revealed that the gas bubble velocity,the overall volumetric liquid phase mass transfer coefficients(kLa),and the specific interfacial area(a)all increased with the increase of the contact angle.Conversely,gas bubble length and leakage flow decreased.Furthermore,we proposed a new modified model to predict the gas-liquid two-phase mass transfer performance,based on van Baten’s and Yao’s models.Our proposed model was observed to agree reasonably well with experimental observations.
基金Supported by the National'Natural Science Foundation of China (20706041, 20876109), and the Natural Science Foundation of Tianjin, China (09JCYBJC06500).
文摘The physical absorption of CO2 in water containing different types of particles was studied in a micro-channel operated under Taylor flow. The maximum enhancement factors of 1.43-2.15 were measured for activated carbon (AcC) particles. The analysis shows that the enhancement effect can be attributed to the shuttle mechanism. Considering the separate contributions of mass transfer from bubble cap and liquid film, a heterogeneous enhance- ment model is developed. According to this model, the enhancement factors Ecap, EFilm and Eov are mainly determined by mass transfer coefficient gL (gL Cap and KL Film), adsorptive capacity of particles m, and coverage fraction of particles at gas-liquid interface (. With both effects of particle-to-interface adhesion and apparent viscosity included, the model nredicts the enhancement effect of AcC varticles reasonably well.
文摘Axisymmetric Couette-Taylor flow between two concentric rotating cylinders was simulated numerically by the spectral method.First,stream function form of the Navier-Stokes equations which homogeneous boundary condition was given by introducing Couette flow.Second,the analytical expressions of the eigenfunction of the Stokes operator in the cylindrical gap region were given and its orthogonality was proved.The estimates of growth rate of the eigenvalue were presented.Finally,spectral Galerkin approximation of Couette-Taylor flow was discussed by introducing eigenfunctions of Stokes operator as basis of finite dimensional approximate subspaces.The existence,uniquence and convergence of spectral Galerkin approximation of nonsingular solution for the steady-state Navier-Stokes equations are proved.Moreover,the error estimates are given.Numerical result is presented.
基金National Natural Science Foundation of China(NSFC),Grant/Award Numbers:61821002,92163213Applied Basic Research Program of Suzhou,Grant/Award Number:SYG202026+1 种基金Collaborative Innovation Center of Suzhou Nano Science and TechnologyPriority Academic Program Development of Jiangsu Higher Education Institutions。
文摘The microchannel reactor is the most commonly used microreaction technology,an innovative reaction system developed in recent years.This study investigates the mass transfer behavior of a gas-liquid two‐phase Taylor flow in a microchannel by coupling the volume‐of‐fluid model and the species transport model.The concentration distribution and the volumetric mass transfer coefficient of the gas solute are determined and discussed in detail.The simulation results reveal that the double‐circulation flow influences the concentration distribution in the liquid slug.The highest value is observed at the bubble's surface and decreases rapidly along the vertical direction of the bubble.The increase of bubble velocity leads to a more apparent decreasing trend.The gas-liquid interface renewal rate of the bubble is accelerated with increasing bubble velocity,resulting in an increase in the average mass transfer rate in all regions of the bubble surface with an increase in bubble velocity.The results also indicate that the liquid film area contributes the most to the mass transfer behavior due to the most significant proportion and average mass transfer rate of the liquid film among the bubble.
文摘In this paper, the flow patterns observed in horizontal Couette-Taylor flow(CTF) were correlated using dimensionless numbers. The analysis of the results showed that the structure of the flow was an outcome of interaction between fluid inertia related to axial and rotational flows and gravitation. Therefore, the flow structures were correlated using axial and angular Reynolds numbers, and Archimedes number for the given value of gas-to-liquid flow ratio. Finally, the correlation for the prediction of the transition to the flow regime observed at high rotational speeds was proposed. The comparison with experiments carried out in the vertical CTF from the literature showed that this correlation can also be useful in the case of vertical flow.
文摘Velocity field data were acquired for Taylor-Couette flow in the annulus gap between a rotating inner cylinder and a fixed concentric outer cylinder by particle image velocimetry. The flocculation efficiencies were also obtained in the same Taylor-Couette flow under the conditions corresponding to the velocity field measurement. It was shown that the flocculation efficiencies reach the maximum values due to the closed vortices in WVF and their contraction and expansion with time, but out of WVF range, the comparatively low flocculation efficiencies were obtained due to the no-closed vortices connected with each other.
基金supported by Basic Science Research Program (2013-008918)through the National Research Foundation (NRF)the Gyeongsang National University Fund for Professors on Sabbatical Leave,2015
文摘The simplified flow of drilling process in the soil hardening or oil rig site was experimentally investigated. Two flow models were used. One is the concentric cylinders with helical protrusion at the inner cylinder. The other is the concentric plain wall cylinders with axial flow. The radius ratio and aspect ratio of both models are the same with 0. 65 and 48,respectively. The mud is the typical fluid seen in the soil hardening processes. We used the water and the mud for the working fluid. We used the optical PIV for the water flow measurement and echo PIV for the mud flow. In case of the water study,the dominant vortical structures appeared in both the protrusion and plain model with axial flow.In case of mud flow,the vortices shown in the water model disappeared and the push and pull-up motion by the protrusion is dominant. We believe this information can be useful to understand the flow physics of drilling process in the complex fluid flow.
文摘Since the classical investigation of the Taylor vortex by G. I. Taylor in 1923, many researchers have studied the Taylor vortex as one of the most important vortex types in flow. In this study, the inner cylinder is rotating, while the outer cylinder, which is concentric with the inner cylinder, is stationary. In addition, the measurement of the velocity distribution is carried out by the PIV (Particle Image Velocimetry) method. The radius of the inner cylinder is 20 mm, and that of the outer cylinder is 30 mm. In this study, Re = 650-1,200 is assumed. In the upper part of the apparatus, movable ends are fixed to the upper and lower sides of the cylinder to change the aspect ratio. The aspect ratio is defined as the ratio of cylinder height to gap distance. A servo motor to rotate the inner cylinder, a servo-motor control device, a servo amplifier for rotation speed control, and a YAG laser light source are installed in the apparatus. For the visualization of Taylor vortex flow, aluminum powder composed of scale like fine particles is used. As tracer particles used in the PIV method, fluorescent particles with a size of 48 Ixm were used. The governing equations are Navier-Stokes equations with cylindrical coordinates (r, θ, z) and the equations of continuity. Each physical value is nondimensionalized using the angular velocity of the inner cylinder as the representative velocity, and the radius difference between the inner and outer cylinders as the representative length. Discretization of the governing equations is based on the MAC method. The results of EFD and CFD (computational fluid dynamics) are compared. The mode bifurcation is observed, and the flow structure is investigated.
文摘Infertility is often cited as one of the causes of a declining birthrate, which has become a serious social problem in recent years. Processes by which motile sperm can be safely and easily sorted are therefore important for infertility treatment. Therefore, as a new sorting method, microfluidic sperm sorter using the microfluidic system has been developed. To improve more separation efficiency of this device, it is necessary to know the behaviors of motile sperm in the microchannel where the sperm undergo shear flow. The previous study implied the necessity of the modeling of motile sperm in the shear flow. In the present study, therefore, we experimentally investigated the behavior of the motile sperm in the Taylor-Couette flow using PTV (Particle Tracking Velocimetry) method. The experimental results showed that the ascent of the shear stress led to the increase in the sperm velocity, and the direction of the sperm velocity was opposite to that of the flow.
文摘Chaotic mixing in a curved-square channel flow is studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient is imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flows. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In the present paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental and numerical results. We produced a micromixer model of the curved channel several centimeters long with square cross section of a few millimeters side. The secondary flow was measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. We also performed three-dimensional numerical simulations for the exactly same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is achieved for the case of De ≤ 0.1Tr, and that mixing efficiency changes according to the difference in inflow conditions. The flow is studied both experimentally and numerically, and both results agree with each other very well.
文摘This paper investigates the magnetohydrodynamic (MHD) boundary layer flow of an incompressible upper-convected Maxwell (UCM) fluid over a porous stretching surface. Similarity transformations are used to reduce the governing partial differential equations into a kind of nonlinear ordinary differential equations. The nonlinear prob- lem is solved by using the successive Taylor series linearization method (STSLM). The computations for velocity components are carried out for the emerging parameters. The numerical values of the skin friction coefficient are presented and analyzed for various parameters of interest in the problem.
文摘Chaotic mixing in three different types of curved-rectangular channels flow has been studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient are imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flow. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In this paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental results and numerical ones. We produced three micromixer models of the curved channel, several centimeters long, with rectangular cross-section of a few millimeters side. The secondary flow is measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. Also we performed three-dimensional numerical simulations with the open source CFD solver, OpenFOAM, for the same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is obtained in the case of De ≤ 0.1 Tr, and it becomes more remarkable when the aspect ratio tends to large. And it is found that the mixing efficiency changes according to the aspect ratio and inflow condition.
文摘The performance of laminar Taylor-Couette flow with different developed procedures is studied by the way of computational fluid dynamics (CFD) in steady state. In order to gain a group of developed procedure in CFD, a set of convergent solutions are used as the initial value of next boundary condition, and the new set of convergent solutions are regarded as developing from the previous steady state. Three groups of developed procedures are gained from the rotating speed series of inner cylinder, respectively from the gradual increase procedure (GIP), the gradual decrease procedure (GDP) and the sudden increase procedure (SIP). It is proved that the convergent solutions of fluid control equations are different when they are solved from laminar state with the same boundary condition, the same fluid property, the same mesh grid in CFD and the same business software except that the flow states have developed from the procedures of GDP, GIP and SIP. It is shown that the developed procedure could leave behind some information in the performance of the flow. In other words, the flow between concentric rotating cylinders has somewhat memory for the procedure of its history.
文摘We investigate the onset and the decay of Taylor-Couette flow in finite cylinders, and we report the estimated time scales in the azimuthal section of the flow state transition between the super-critical state and the sub-critical state by fitting the numerical result to the solution of the Stuart-Landau equation. The inner cylinder rotates, and the outer cylinder and both end walls of the cylinders are stationary. Near the end walls of the cylinders, the value of the time scale is small. In the inner region, the radial velocity component has a large time scale near the center of the vortices, while the axial velocity component has a large time scale between the vortices.
文摘Taylor vortex flow between two concentric rotating cylinders with finite axial length includes various patterns of laminar and turbulent flows, and its behavior has attracted great interests. When mode bifurcation occurs, quantitative parameters such as the volume-averaged energy change rapidly. It is important to visualize the behaviors of vortices. In this study, a three-dimensional visualization system with respect to time is devised. This system can change the viewpoint of flow visualization, and we can observe the track of a vortex from any point. The volume-averaged energy is projected to the track of the center of a vortex. The proposed system can help to investigate the relationship between the mode bifurcation process and the volume-averaged energy.
基金This work was supported by the National Natural Science Foundation of China No.10035020.
文摘A magnetohydrodynamic (MHD) formulation is derived to investigate and compare the mitigation effects of both the sheared axial flow and finite Larmor radius (FLR) on the Rayleigh-Taylor (RT) instability in Z-pinch implosions. The sheared axial flow is introduced into MHD equations in a conventional way and the FLR effect into the equations via /t → -i(w+ik⊥2pi2Ωi,), as proposed in our previous paper [Chin. Phys. Lett. 2002, 19:217] , where k⊥2 pi2 is referred to FLR effect from the general kinetic theory of magnetized plasma. Therefore the linearized continuity and momentum equations for the perturbed mass-density and velocity include both the sheared axial flow and the FLR effect. It is found that the effect of sheared axial flow with a lower peak velocity can mitigate RT instability in the whole wavenumber region and the effect of sheared axial flow with a higher one can mitigate RT instability only in the large wavenumber region (for normalized wavenumber k】2.4); The effect of FLR can mitigate RT instability in the whole wavenumber region and the mitigation effect is stronger than that of the sheared axial flow with a lower peak velocity in the almost whole wavenumber region.
文摘We have numerically and experimentally investigated the flow modes of Taylor-Couette system consisting of coaxial two cylinders with vertical axes. The inner cylinder rotates and the outer cylinder and the bottom end of the cylinders remain stationary. The upper top boundary is the free surface of the working liquid between the inner and outer cylinders and it contacts with the air. While this flow appears in fluid machinery and chemical reactors and includes industrial interests, it also contains problems of fluid mechanics, which is about the behavior of the free surface in the rotating field. In this paper, we concretely show the developments of the one cell mode flow and the three cell mode flow at a small aspect ratio. We also represent the bifurcation diagram of the flow at the moderate aspect ratio about 5.5. In the numerical simulation, the flow is rest in the initial state, and the inner cylinder is linearly or suddenly accelerated to attain a flow with a prescribed Reynolds number. When the acceleration of the inner cylinder is high, an imperfect bifurcation occurs and the flows of the secondary modes emerge. At high Reynolds numbers, the flow first has many vortices and then some of the vortices collapse and the final stable flow arises. The loci of the normal five cell mode, the anomalous six cell mode and the secondary seven cell mode are determined.