The quality factor Q is an important parameter because it can refl ect the reservoir attenuated features and can be used for inverse-Q filtering to compensate for the seismic wave energy.The accuracy of the Q estimati...The quality factor Q is an important parameter because it can refl ect the reservoir attenuated features and can be used for inverse-Q filtering to compensate for the seismic wave energy.The accuracy of the Q estimation is greatly significant for improving the precision of the reservoir prediction and the resolution of seismic data.In this paper,the Q estimation formulas of the single-frequency point are derived on the basis of a diff erent-order Taylor series expansion of the amplitude attenuated factor.Moreover,the multifrequency point average(MFPA)method is introduced to obtain a stable Q estimation.The model tests demonstrate that the MFPA method is less aff ected by the frequency band,travel time diff erence,time window width,and noise interference than the logical spectrum ratio(LSR)method and the energy ratio(ER)method and has a higher Q estimation accuracy.In addition,the proposed method can be applied to post-stack seismic data and obtain eff ective Q values of complex models.When the MFPA method was applied to real marine seismic data,the Q values estimated by the MFPA method with the 1st–4th order showed good consistency with each other.In contrast,the Q values obtained by the ER method were larger than those of the proposed method,while those estimated by the LSR method signifi cantly deviated from the average values.In conclusion,the MFPA method has superior stability and practicability for the Q estimation.展开更多
A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a s...A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.展开更多
A variation of the direct Taylor expansion algorithm is suggested and applied to several linear and nonlinear differential equations of interest in physics and engineering, and the results are compared with those obta...A variation of the direct Taylor expansion algorithm is suggested and applied to several linear and nonlinear differential equations of interest in physics and engineering, and the results are compared with those obtained from other algorithms. It is shown that the suggested algorithm competes strongly with other existing algorithms, both in accuracy and ease of application, while demanding a shorter computation time.展开更多
This paper presents a Modified Power Series Method (MPSM) for the solution of delay differential equations. Unlike the traditional power series method which is applied to solve only linear differential equations, this...This paper presents a Modified Power Series Method (MPSM) for the solution of delay differential equations. Unlike the traditional power series method which is applied to solve only linear differential equations, this new approach is applicable to both linear and nonlinear problems. The method produces a system of algebraic equations which is solved to determine the coefficients in the trial solution. The method provides the solution in form of a rapid convergent series. The obtained results for numerical examples demonstrate the reliability and efficiency of the method.展开更多
In this paper,we introduce an accelerating algorithm based on the Taylor series for reconstructing target images in the spectral digital image correlation method(SDIC).The Taylor series image reconstruction method is ...In this paper,we introduce an accelerating algorithm based on the Taylor series for reconstructing target images in the spectral digital image correlation method(SDIC).The Taylor series image reconstruction method is employed instead of the previous direct Fourier transform(DFT)image reconstruction method,which consumes the majority of the computational time for target image reconstruction.The partial derivatives in the Taylor series are computed using the fast Fourier transform(FFT)of the entire image,following the principles of Fourier transform theory.To examine the impact of different orders of Taylor series expansion on accuracy and efficiency,we employ third-and fourth-order Taylor series image reconstruction methods and compare them with the DFT image reconstruction method through simulated experiments.As a result of these enhancements,the computational efficiency using the third-and fourth-order Taylor series improves by factors of 57 and 46,respectively,compared to the previous method.In terms of analysis accuracy,within a strain range of 0–0.1 and without the addition of image noise,the accuracy of the proposed method increases with higher expansion orders,surpassing that of the DFT image reconstruction method when the fourth order is utilized.However,when different levels of Gaussian noise are applied to simulated images individually,the accuracy of the third-or fourth-order Taylor series expansion method is superior to that of the DFT reconstruction method.Finally,we present the analyzed experimental results of a silicone rubber plate specimen with bilateral cracks under uniaxial tension.展开更多
Presented in this paper is a convergence theorem for a kind of composite power series expansions whose coefficients can be expressed by using Faa` di Bruno’s formula. A related problem is proposed as a remark, and a ...Presented in this paper is a convergence theorem for a kind of composite power series expansions whose coefficients can be expressed by using Faa` di Bruno’s formula. A related problem is proposed as a remark, and a few examples are given as applications.展开更多
提出了一种到达时间(time of arrival,TOA)模式下总体最小二乘(total least square,TLS)辅助泰勒级数展开的蜂窝定位新算法。该算法针对泰勒级数展开对初始迭代参考点依赖性强的问题,综合考虑观测量误差和观测站位置误差,利用TLS估计初...提出了一种到达时间(time of arrival,TOA)模式下总体最小二乘(total least square,TLS)辅助泰勒级数展开的蜂窝定位新算法。该算法针对泰勒级数展开对初始迭代参考点依赖性强的问题,综合考虑观测量误差和观测站位置误差,利用TLS估计初始参考点,然后在估计值处对观测方程组实施泰勒级数展开,并使用加权最小二乘进行多次迭代运算,实现对移动终端的高精度定位。仿真结果表明,该算法在平均迭代次数和定位精度方面具有接近基于真实位置的泰勒级数展开算法的性能,并且在不同的几何精度因子(geometrical dilution ofprecision,GDOP)下,均具备良好的抗观测量误差和观测站位置误差的特性。展开更多
时域有限差分法(FDTD)是计算电磁领域中的一类非常重要的研究工具。而 Taylor 级数展开定理是构造差分格式的一种重要方法,例如 Yee 格式采用二阶 Taylor 格式,Fang 格式采用四阶 Taylor 格式。本文借助于采样定理,详细分析了不同阶 Tay...时域有限差分法(FDTD)是计算电磁领域中的一类非常重要的研究工具。而 Taylor 级数展开定理是构造差分格式的一种重要方法,例如 Yee 格式采用二阶 Taylor 格式,Fang 格式采用四阶 Taylor 格式。本文借助于采样定理,详细分析了不同阶 Taylor 中心差分格式的谱特性以及计算误差,并将任意阶 Taylor 中心差分格式用于数值求解麦克斯韦方程中,严格导出了稳定性条件和数值色散关系的表达式,引入了新的误差定义来衡量算法的好坏。详细地研究了 Courant 数、网格分辨率 CPW 和网格长度比率等因素对于数值色散误差的影响,为基于 Taylor 差分格式的 FDTD 算法的研究提供了有用的参考。展开更多
提出了一种基于PEBS法暂态稳定分析的能量裕度灵敏度计算方法。该方法以系统故障前稳定平衡点作为暂态势能参考点,沿持续故障轨迹采用数值方法计算暂态势能。在系统持续故障仿真和灵敏度动态方程计算过程中,引入高阶Taylor级数展开技术...提出了一种基于PEBS法暂态稳定分析的能量裕度灵敏度计算方法。该方法以系统故障前稳定平衡点作为暂态势能参考点,沿持续故障轨迹采用数值方法计算暂态势能。在系统持续故障仿真和灵敏度动态方程计算过程中,引入高阶Taylor级数展开技术,可以在保持计算精度的前提下提高计算步长,显著提高计算速度。将到达临界势能点的判据展开以时间为自变量的多项式形式,通过解方程求得到达临界势能点的时间,从而快速确定临界势能点的位置。提出的能量裕度灵敏度分析方法包括两方面:计算故障前机组机械注入功率变化对能量裕度的灵敏度,用于指导预防控制;计算故障切除后的控制措施对稳定裕度的影响,用于指导紧急控制。New England 10机系统算例验证了该方法的有效性。展开更多
基金supported by The National Natural Science Foundation (Grant Nos.41874126, 42004114)the Key Research and development project of Jiangxi Province in China (Grant No.20192ACB80006)+1 种基金the Natural Science Foundation of Jiangxi Province (Grant Nos. 20202BAB211010, 20212BAB203005)Open Foundation of State Key Laboratory of Nuclear Resources and Environment (2020NRE25)
文摘The quality factor Q is an important parameter because it can refl ect the reservoir attenuated features and can be used for inverse-Q filtering to compensate for the seismic wave energy.The accuracy of the Q estimation is greatly significant for improving the precision of the reservoir prediction and the resolution of seismic data.In this paper,the Q estimation formulas of the single-frequency point are derived on the basis of a diff erent-order Taylor series expansion of the amplitude attenuated factor.Moreover,the multifrequency point average(MFPA)method is introduced to obtain a stable Q estimation.The model tests demonstrate that the MFPA method is less aff ected by the frequency band,travel time diff erence,time window width,and noise interference than the logical spectrum ratio(LSR)method and the energy ratio(ER)method and has a higher Q estimation accuracy.In addition,the proposed method can be applied to post-stack seismic data and obtain eff ective Q values of complex models.When the MFPA method was applied to real marine seismic data,the Q values estimated by the MFPA method with the 1st–4th order showed good consistency with each other.In contrast,the Q values obtained by the ER method were larger than those of the proposed method,while those estimated by the LSR method signifi cantly deviated from the average values.In conclusion,the MFPA method has superior stability and practicability for the Q estimation.
文摘A method that series perturbations approximate solutions to N-S equations with boundary conditions was discussed and adopted. Then the method was proved in which the asymptotic solutions of viscous fluid flow past a sphere were deducted. By the ameliorative asymptotic expansion matched method, the matched functions, are determined easily and the ameliorative curve of drag coefficient is coincident well with measured data in the case that Reynolds number is less than or equal to 40 000.
文摘A variation of the direct Taylor expansion algorithm is suggested and applied to several linear and nonlinear differential equations of interest in physics and engineering, and the results are compared with those obtained from other algorithms. It is shown that the suggested algorithm competes strongly with other existing algorithms, both in accuracy and ease of application, while demanding a shorter computation time.
文摘This paper presents a Modified Power Series Method (MPSM) for the solution of delay differential equations. Unlike the traditional power series method which is applied to solve only linear differential equations, this new approach is applicable to both linear and nonlinear problems. The method produces a system of algebraic equations which is solved to determine the coefficients in the trial solution. The method provides the solution in form of a rapid convergent series. The obtained results for numerical examples demonstrate the reliability and efficiency of the method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272145 and 11972013)the Ministry of Science and Technology of China(Grant No.2018YFF01014200)Hubei Provincial Natural Science Foundation of China(Grant No.2022CFB288).
文摘In this paper,we introduce an accelerating algorithm based on the Taylor series for reconstructing target images in the spectral digital image correlation method(SDIC).The Taylor series image reconstruction method is employed instead of the previous direct Fourier transform(DFT)image reconstruction method,which consumes the majority of the computational time for target image reconstruction.The partial derivatives in the Taylor series are computed using the fast Fourier transform(FFT)of the entire image,following the principles of Fourier transform theory.To examine the impact of different orders of Taylor series expansion on accuracy and efficiency,we employ third-and fourth-order Taylor series image reconstruction methods and compare them with the DFT image reconstruction method through simulated experiments.As a result of these enhancements,the computational efficiency using the third-and fourth-order Taylor series improves by factors of 57 and 46,respectively,compared to the previous method.In terms of analysis accuracy,within a strain range of 0–0.1 and without the addition of image noise,the accuracy of the proposed method increases with higher expansion orders,surpassing that of the DFT image reconstruction method when the fourth order is utilized.However,when different levels of Gaussian noise are applied to simulated images individually,the accuracy of the third-or fourth-order Taylor series expansion method is superior to that of the DFT reconstruction method.Finally,we present the analyzed experimental results of a silicone rubber plate specimen with bilateral cracks under uniaxial tension.
文摘Presented in this paper is a convergence theorem for a kind of composite power series expansions whose coefficients can be expressed by using Faa` di Bruno’s formula. A related problem is proposed as a remark, and a few examples are given as applications.
文摘提出了一种到达时间(time of arrival,TOA)模式下总体最小二乘(total least square,TLS)辅助泰勒级数展开的蜂窝定位新算法。该算法针对泰勒级数展开对初始迭代参考点依赖性强的问题,综合考虑观测量误差和观测站位置误差,利用TLS估计初始参考点,然后在估计值处对观测方程组实施泰勒级数展开,并使用加权最小二乘进行多次迭代运算,实现对移动终端的高精度定位。仿真结果表明,该算法在平均迭代次数和定位精度方面具有接近基于真实位置的泰勒级数展开算法的性能,并且在不同的几何精度因子(geometrical dilution ofprecision,GDOP)下,均具备良好的抗观测量误差和观测站位置误差的特性。
文摘时域有限差分法(FDTD)是计算电磁领域中的一类非常重要的研究工具。而 Taylor 级数展开定理是构造差分格式的一种重要方法,例如 Yee 格式采用二阶 Taylor 格式,Fang 格式采用四阶 Taylor 格式。本文借助于采样定理,详细分析了不同阶 Taylor 中心差分格式的谱特性以及计算误差,并将任意阶 Taylor 中心差分格式用于数值求解麦克斯韦方程中,严格导出了稳定性条件和数值色散关系的表达式,引入了新的误差定义来衡量算法的好坏。详细地研究了 Courant 数、网格分辨率 CPW 和网格长度比率等因素对于数值色散误差的影响,为基于 Taylor 差分格式的 FDTD 算法的研究提供了有用的参考。
文摘提出了一种基于PEBS法暂态稳定分析的能量裕度灵敏度计算方法。该方法以系统故障前稳定平衡点作为暂态势能参考点,沿持续故障轨迹采用数值方法计算暂态势能。在系统持续故障仿真和灵敏度动态方程计算过程中,引入高阶Taylor级数展开技术,可以在保持计算精度的前提下提高计算步长,显著提高计算速度。将到达临界势能点的判据展开以时间为自变量的多项式形式,通过解方程求得到达临界势能点的时间,从而快速确定临界势能点的位置。提出的能量裕度灵敏度分析方法包括两方面:计算故障前机组机械注入功率变化对能量裕度的灵敏度,用于指导预防控制;计算故障切除后的控制措施对稳定裕度的影响,用于指导紧急控制。New England 10机系统算例验证了该方法的有效性。