Photoluminescent (PL) and cathodoluminescent (CL) properties of rare earths (Sc^3+ , La^3+ , Gd^3+ and Lu^3+ ) doped (Y0.97Tb0.03)2SiO5 were studied. Rare earth doping clearly influences PL and CL properti...Photoluminescent (PL) and cathodoluminescent (CL) properties of rare earths (Sc^3+ , La^3+ , Gd^3+ and Lu^3+ ) doped (Y0.97Tb0.03)2SiO5 were studied. Rare earth doping clearly influences PL and CL properties of Y2SiO5 : Tb. For La^3+ doped system, PL intensity increases nearly 10 % at x = 0.05 whereas for Lu^3+ doped system, the intensity increases about 20% at x = 0.20. Gd^3 + doping and Sc^3+ doping reduce the intensity; at x = 0.3, it is reduced about 30% for Gd^3+ doped system and about 15 % for Sc^3+ doped system, respectively. Quenching concentration of activator became higher in rare earth doped samples, which may be understood by that the rare earth dopants might dilute the concentration of the activator. Additionally, doping also influences the color saturation of Y2SiO5 : Tb. Sc^3+ , La^3+ , and Gd^3doping improve the color saturation, whereas Lu^3+ doping decreases the color saturation. CL measurements show that CL intensity increases for all rare earths doped systems. The energy transfer from Gd^3+ to Tb^3+ was discussed.展开更多
This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. Accordin...This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Ω2=9.3155×10^-20 cm^2, Ω4=8.4103×10^-20 cm^2, Ω6=1.5908×10^-20 cm^2, the fluorescence lifetime is calculated to be 2.03 ms for ^3F4 → ^3H6 transition, and the integrated emission cross section is 5.81×10^-18 cm^2. Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuouswave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06μm with spectral bandwidth of -13.6 nm.展开更多
Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal c...Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal constituents would be arranged at the lattice sites by precisely controlling the crystal growth process.Growing interface is the position where the phase transition of crystal constituents occurs during pulling growth process.The precise control of energy at the growing interface becomes a key technique in pulling growth.In this work,we review some recent advances of pulling technique towards rare earth single crystal growth.In Czochralski pulling growth,the optimized growth parameters were designed for rare earth ions doped Y_3Al_5O_(12)and Ce:(Lu_(1-x)Y_x)_2Si O_5on the basis of anisotropic chemical bonding and isotropic mass transfer calculations at the growing interface.The fast growth of high quality rare earth single crystals is realized by controlling crystallization thermodynamics and kinetics in different size zones.On the other hand,the micro pulling down technique can be used for high throughput screening novel rare earth optical crystals.The growth interface control is realized by improving the crucible bottom and temperature field,which favors the growth of rare earth crystal fibers.The rare earth laser crystal fiber can serve as another kind of laser gain medium between conventional bulk single crystal and glass fiber.The future work on pulling technique might focus on the mass production of rare earth single crystals with extreme size and with the size near that of devices.展开更多
基金Project supported bythe State Key Programfor Basic Research of China (G1998061306) ,the National Natural Science Foun-dationof China (20221101) ,the Natural Science Foundation of Shaanxi Province (2004B31) and Youth Foundation ofShaanxi Normal University
文摘Photoluminescent (PL) and cathodoluminescent (CL) properties of rare earths (Sc^3+ , La^3+ , Gd^3+ and Lu^3+ ) doped (Y0.97Tb0.03)2SiO5 were studied. Rare earth doping clearly influences PL and CL properties of Y2SiO5 : Tb. For La^3+ doped system, PL intensity increases nearly 10 % at x = 0.05 whereas for Lu^3+ doped system, the intensity increases about 20% at x = 0.20. Gd^3 + doping and Sc^3+ doping reduce the intensity; at x = 0.3, it is reduced about 30% for Gd^3+ doped system and about 15 % for Sc^3+ doped system, respectively. Quenching concentration of activator became higher in rare earth doped samples, which may be understood by that the rare earth dopants might dilute the concentration of the activator. Additionally, doping also influences the color saturation of Y2SiO5 : Tb. Sc^3+ , La^3+ , and Gd^3doping improve the color saturation, whereas Lu^3+ doping decreases the color saturation. CL measurements show that CL intensity increases for all rare earths doped systems. The energy transfer from Gd^3+ to Tb^3+ was discussed.
基金Project supported by the Program of Excellent Team in Harbin Institute of Technology, China (Grant No 60878011)
文摘This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Ω2=9.3155×10^-20 cm^2, Ω4=8.4103×10^-20 cm^2, Ω6=1.5908×10^-20 cm^2, the fluorescence lifetime is calculated to be 2.03 ms for ^3F4 → ^3H6 transition, and the integrated emission cross section is 5.81×10^-18 cm^2. Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuouswave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06μm with spectral bandwidth of -13.6 nm.
基金supported by Jilin Province Science and Technology Development Project(Grant No.21521092JH)
文摘Pulling growth technique serves as a popular method to grow congruent melting single crystals with multiscale sizes ranging from micrometers to centimeters.In order to obtain high quality single crystals,the crystal constituents would be arranged at the lattice sites by precisely controlling the crystal growth process.Growing interface is the position where the phase transition of crystal constituents occurs during pulling growth process.The precise control of energy at the growing interface becomes a key technique in pulling growth.In this work,we review some recent advances of pulling technique towards rare earth single crystal growth.In Czochralski pulling growth,the optimized growth parameters were designed for rare earth ions doped Y_3Al_5O_(12)and Ce:(Lu_(1-x)Y_x)_2Si O_5on the basis of anisotropic chemical bonding and isotropic mass transfer calculations at the growing interface.The fast growth of high quality rare earth single crystals is realized by controlling crystallization thermodynamics and kinetics in different size zones.On the other hand,the micro pulling down technique can be used for high throughput screening novel rare earth optical crystals.The growth interface control is realized by improving the crucible bottom and temperature field,which favors the growth of rare earth crystal fibers.The rare earth laser crystal fiber can serve as another kind of laser gain medium between conventional bulk single crystal and glass fiber.The future work on pulling technique might focus on the mass production of rare earth single crystals with extreme size and with the size near that of devices.