Grain boundary diffusion technique with TbH3 nanoparticles was applied to fabricate Tb-less sintered NdFe-B permanent magnets with high coercivity. The magnetic properties and microstructure of magnets were systematic...Grain boundary diffusion technique with TbH3 nanoparticles was applied to fabricate Tb-less sintered NdFe-B permanent magnets with high coercivity. The magnetic properties and microstructure of magnets were systematically studied. The coercivity and remanence of grain boundary diffusion magnet are improved by 112% and reduced by 26% compared with those of the original magnet, respectively. Meanwhile, both the remanence temperature coefficient(α) and the coercivity temperature coefficient(β) of the magnets are improved after diffusion treatment. Microstructure shows that Tb element enriches in the surface region of Nd2Fe(14)B grains and is expected to exist as(Nd,Tb)2Fe(14)B phase. Thus, the magneto-crystalline anisotropy field of the magnet improves remarkably. As a result, the sintered Nd-FeB magnets by grain boundary diffusion with TbH3 nanoparticles exhibit enhanced coercivity.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51001002 and 51371002)the National High Technology Research and Development Program of China(No.2012AA063201)+3 种基金the Key Program of Science and Technology Development Project of Beijing Municipal Education Commission(No.KZ201110005007)Jinghua Talents of Beijing University of TechnologyRixin Talents of Beijing University of Technologythe Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions
文摘Grain boundary diffusion technique with TbH3 nanoparticles was applied to fabricate Tb-less sintered NdFe-B permanent magnets with high coercivity. The magnetic properties and microstructure of magnets were systematically studied. The coercivity and remanence of grain boundary diffusion magnet are improved by 112% and reduced by 26% compared with those of the original magnet, respectively. Meanwhile, both the remanence temperature coefficient(α) and the coercivity temperature coefficient(β) of the magnets are improved after diffusion treatment. Microstructure shows that Tb element enriches in the surface region of Nd2Fe(14)B grains and is expected to exist as(Nd,Tb)2Fe(14)B phase. Thus, the magneto-crystalline anisotropy field of the magnet improves remarkably. As a result, the sintered Nd-FeB magnets by grain boundary diffusion with TbH3 nanoparticles exhibit enhanced coercivity.