期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
CHARACTERISTIC THEOREMS OF TH ENATURAL TCHEBYSHEFF SPLINE FUNCTION
1
作者 姜至本 王成伟 《Journal of China Textile University(English Edition)》 EI CAS 1993年第2期63-70,共8页
In this paper,we give four characteristic theorems of the natural Tchebysheff splint functionassociated with multiple knots.These theorems possess specific form,that arc convenient forapplicaton;In the case of with si... In this paper,we give four characteristic theorems of the natural Tchebysheff splint functionassociated with multiple knots.These theorems possess specific form,that arc convenient forapplicaton;In the case of with simple knots or polynomial splint,the corollaries of this paper’s the-orems give corresponding results. 展开更多
关键词 GENERATING functionS Greens functionS EXTENDED complete tchebysheff system EXTENDED differential operator tchebysheff spline function natural tchebysheffspline function
下载PDF
THE SARD BEST APPROXIMATION OF LINEAR FUNCTIONAL
2
作者 姜至本 王成伟 《Journal of China Textile University(English Edition)》 EI CAS 1994年第1期93-106,共14页
In numerical analysis, it is significant to approximate the linear functional Ef=sum from i=0 to m-1([integral from a to b(a<sub>1</sub>(x)f<sup>1</sup>(x)dx+ sum from f=0 to i<sub>1&... In numerical analysis, it is significant to approximate the linear functional Ef=sum from i=0 to m-1([integral from a to b(a<sub>1</sub>(x)f<sup>1</sup>(x)dx+ sum from f=0 to i<sub>1</sub>(b<sub>1</sub>f<sup>1</sup>(x<sub>1</sub>))]) by a simpler linear functional Lf=sum from i=1 to m(a<sub>1</sub>f(x<sub>1</sub>)) In this paper, making use of natural Tchebysheff spline function, we give existence theorem and uniqueness theorem of L that is exact for the degree m to F; we also give three sufficient and necessary conditions in which L is the Sard best approximation to F. 展开更多
关键词 Linear functional SARD best APPROXIMATION natural tchebysheff spline function EXTENDED COMPLETE tchebysheff system EXTENDED differential operator.
下载PDF
T样条函数空间的局部支集基
3
作者 姜至本 《工科数学》 1998年第4期43-48,共6页
Schumaker,L.L.在其名著《SplineFunction:BasicTheory》中第九章给出了Tchebysh-ef样条函数空间的局部支集基定理,可惜其证明却是错的,本文给出了上述定理的正确证明.
关键词 支集 定理 样条函数 证明 正确 空间 名著 局部
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部