This paper aims to explore how a veteran teacher organizes online teaching initiated by the pandemic and how she deals with the problems in online teacher-student verbal interaction.By analyzing a corpus of 20 audio-r...This paper aims to explore how a veteran teacher organizes online teaching initiated by the pandemic and how she deals with the problems in online teacher-student verbal interaction.By analyzing a corpus of 20 audio-recorded online lessons between a math teacher and her students during the COVID-19 pandemic from April 11 to May 10,2022,four interactional segments are selected as the focus of the study.The results of the conversation analysis of the segments showed that students’modesty,lack of confidence,lack of ability,and network delay are the main factors affecting online teacher-student interaction.By encouraging students to answer questions,enlightening students to give answers,enriching students’answers,and entertaining the teaching atmosphere(“4Es”strategies),the teacher solved the problems successfully.The findings from this study can provide pedagogical experience and implications for practical teaching.展开更多
This case study examines the interaction through emails between a professor and one of his third-year students outside of the classroom to explore the problems in the teacher-student interaction.It shows that confront...This case study examines the interaction through emails between a professor and one of his third-year students outside of the classroom to explore the problems in the teacher-student interaction.It shows that confronted with difficulties,the student turns directly to her teacher,yet failing to make her specific difficulties known,and the teacher spares no pains to exemplify the doing of assignments,yet knowing little about his student’s knowings and unknowings.At the end of the article are some enlightenments:seeking help after self-attempting and helping after knowing.展开更多
Teacher-student collaborative assessment(TSCA)aims to address the challenges of responding to students’work in the Production-Oriented Approach:low efficiency and poor effectiveness.As part of a bigger project carrie...Teacher-student collaborative assessment(TSCA)aims to address the challenges of responding to students’work in the Production-Oriented Approach:low efficiency and poor effectiveness.As part of a bigger project carried out in a Chinese university over a period of three years,the present study explored how the teacher prepared and implemented TSCA in class,especially with a focus on how she determined the assessing objective and worked collaboratively with her students in class to achieve it,using the students’written and translated texts as examples.By adopting the dialectical research(DR)method,this paper collected qualitative data such as teaching plans,classroom recordings,and reflective journals of the teacher-researcher(the author),along with students’written drafts and translated texts.TSCA theory and classroom practice have been refined simultaneously by means of putting theory into practice and reflecting upon it.The optimized pre-class and in-class procedures may shed some light on applying TSCA to L2 classrooms.展开更多
This paper aimed to investigate the effect of teacher talk on teacher-student rapport in college English classroom.Be sides,it attempted to analyze how to build teacher-student rapport in English classroom based on th...This paper aimed to investigate the effect of teacher talk on teacher-student rapport in college English classroom.Be sides,it attempted to analyze how to build teacher-student rapport in English classroom based on the theories of teacher Talk,hoping that it can assist teachers to upgrade their awareness in teacher talk and increase language learning and teaching efficiency.展开更多
This article examines the application of Teacher-student Collaborative Assessment in college students’oral English.Qualitative Study data were collected during 16 weeks teaching practice and included the students’an...This article examines the application of Teacher-student Collaborative Assessment in college students’oral English.Qualitative Study data were collected during 16 weeks teaching practice and included the students’and the examiner’s interviews.The result indicates that most students’oral English has been improved.They prefer this assessment model,and their English learning interest and proficiency has been enhanced as well.展开更多
This essay is an action research report, focusing on the analysis of a common problem in EFL teaching---passive class. By analyzing the data collected in an EFL class, the author testifies the hypotheses, reflects on ...This essay is an action research report, focusing on the analysis of a common problem in EFL teaching---passive class. By analyzing the data collected in an EFL class, the author testifies the hypotheses, reflects on some possible reasons for the passive class and proposes suggestions to improve the teacher-student interaction.展开更多
The development of the Internet of Things(IoT)has brought great convenience to people.However,some information security problems such as privacy leakage are caused by communicating with risky users.It is a challenge t...The development of the Internet of Things(IoT)has brought great convenience to people.However,some information security problems such as privacy leakage are caused by communicating with risky users.It is a challenge to choose reliable users with which to interact in the IoT.Therefore,trust plays a crucial role in the IoT because trust may avoid some risks.Agents usually choose reliable users with high trust to maximize their own interests based on reinforcement learning.However,trust propagation is time-consuming,and trust changes with the interaction process in social networks.To track the dynamic changes in trust values,a dynamic trust inference algorithm named Dynamic Double DQN Trust(Dy-DDQNTrust)is proposed to predict the indirect trust values of two users without direct contact with each other.The proposed algorithm simulates the interactions among users by double DQN.Firstly,CurrentNet and TargetNet networks are used to select users for interaction.The users with high trust are chosen to interact in future iterations.Secondly,the trust value is updated dynamically until a reliable trust path is found according to the result of the interaction.Finally,the trust value between indirect users is inferred by aggregating the opinions from multiple users through a Modified Collaborative Filtering Averagebased Similarity(SMCFAvg)aggregation strategy.Experiments are carried out on the FilmTrust and the Epinions datasets.Compared with TidalTrust,MoleTrust,DDQNTrust,DyTrust and Dynamic Weighted Heuristic trust path Search algorithm(DWHS),our dynamic trust inference algorithm has higher prediction accuracy and better scalability.展开更多
Teachers and students play important roles in teaching activity,and they are the most essential parts of the system.The relationship between teachers and students,the core schooling interpersonal relationship,directly...Teachers and students play important roles in teaching activity,and they are the most essential parts of the system.The relationship between teachers and students,the core schooling interpersonal relationship,directly determines whether the teach ing activities can go smoothly or not,and is an important index to measure the quality of teachers and students'school life,and also is an important factor that affects the social function of education.For a long time,relationship between teachers and students has been a hot topic in education and in different sectors of the society.This dissertation aims at discussing the teacher-student role changing in interactive teaching mode to provide reference for building a harmonious relationship between teachers and stu dents.展开更多
Objective:The study is to analyze the influence of parent-child relationship on pupils’learning motivation,and to explore the mediating mechanism of teacher-student relationship in parent-child relationship and learn...Objective:The study is to analyze the influence of parent-child relationship on pupils’learning motivation,and to explore the mediating mechanism of teacher-student relationship in parent-child relationship and learning motivation.Method:This study conducted a questionnaire survey on 213 pupils in Grades 5 and 6 in two schools in Beijing using Pianta’s teacher-student relationship scale revised by Qu,Dornbush’s parent-child intimacy scale revised by Zhang and the learning motivation scale adapted by Hu.Results:Gender,grade,whether they are the only child and to be a class cadre or not show significant differences in some dimensions of parent-child relationship,teacher-student relationship and learning motivation.The total scores of parent-child relationship,teacher-student relationship and learning motivation are positively correlated,and some sub dimensions are also significantly correlated.Parent-child relationship and teacher-student relationship have a significant positive predictive effect on learning motivation,and parent-child relationship has a significant positive predictive effect on teacher-student relationship.Teacher-student relationship plays a mediating role in the influence of parent-child relationship on learning motivation.Conclusions:Parent-child relationship can promote the relationship between teachers and students,and then enhance pupils’learning motivation.展开更多
Low efficiency in teaching and time-consuming in writing evaluation are two big problems for college English teachers.Therefore,it is necessary to create a new teaching model to solve these problems existing in tradit...Low efficiency in teaching and time-consuming in writing evaluation are two big problems for college English teachers.Therefore,it is necessary to create a new teaching model to solve these problems existing in traditional classroom-based teaching.This research adopts the research methods of test comparison before and after the students’composition experiment,questionnaire and semi-open interviews.Empirical research on a new teaching model that integrates the intelligent composition review and reform system represented by Piangai.com and the collaborative evaluation of teachers and students is conducted.The research results show that the new writing teaching model improves the quality of students’writing,promotes students’learning initiative,and enhances students’writing self-efficacy.This writing teaching model provides ideas for solving the problem of time-consuming and inefficient English writing teaching in large classes.展开更多
In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are...In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.展开更多
The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the e...The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field.展开更多
Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul...Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.展开更多
Advancements in the vehicular network technology enable real-time interconnection,data sharing,and intelligent cooperative driving among vehicles.However,malicious vehicles providing illegal and incorrect information ...Advancements in the vehicular network technology enable real-time interconnection,data sharing,and intelligent cooperative driving among vehicles.However,malicious vehicles providing illegal and incorrect information can compromise the interests of vehicle users.Trust mechanisms serve as an effective solution to this issue.In recent years,many researchers have incorporated blockchain technology to manage and incentivize vehicle nodes,incurring significant overhead and storage requirements due to the frequent ingress and egress of vehicles within the area.In this paper,we propose a distributed vehicular network scheme based on trust scores.Specifically,the designed architecture partitions multiple vehicle regions into clusters.Then,cloud supervision systems(CSSs)verify the accuracy of the information transmitted by vehicles.Additionally,the trust scores for vehicles are calculated to reward or penalize them based on the trust evaluation model.Our proposed scheme demonstrates good scalability and effectively addresses the main cause of malicious information distribution among vehicles.Both theoretical and experimental analysis show that our scheme outperforms the compared schemes.展开更多
First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism...First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism based on the time decay factor is proposed,taking into account the influence of historical interaction records.We weight the time attenuation factor to each historical interaction record for updating and got the new historical record data.We refer to the beta distribution to enhance the flexibility and adaptability of the direct trust assessment model to better capture time trends in the historical record.Then we propose an autoencoder-based trust clustering algorithm.We perform feature extraction based on autoencoders.Kullback leibler(KL)divergence is used to calculate the reconstruction error.When constructing a convolutional autoencoder,we introduce convolutional neural networks to improve training efficiency and introduce sparse constraints into the hidden layer of the autoencoder.The sparse penalty term in the loss function measures the difference through the KL divergence.Trust clustering is performed based on the density based spatial clustering of applications with noise(DBSCAN)clustering algorithm.During the clustering process,edge nodes have a variety of trustworthy attribute characteristics.We assign different attribute weights according to the relative importance of each attribute in the clustering process,and a larger weight means that the attribute occupies a greater weight in the calculation of distance.Finally,we introduced adaptive weights to calculate comprehensive trust evaluation.Simulation experiments prove that our trust evaluation mechanism has excellent reliability and accuracy.展开更多
As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have pro...As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have proper trust in medical machines.Intelligent machines that have applied machine learning(ML)technologies continue to penetrate deeper into the medical environment,which also places higher demands on intelligent healthcare.In order to make machines play a role in HMI in healthcare more effectively and make human‐machine cooperation more harmonious,the authors need to build good humanmachine trust(HMT)in healthcare.This article provides a systematic overview of the prominent research on ML and HMT in healthcare.In addition,this study explores and analyses ML and three important factors that influence HMT in healthcare,and then proposes a HMT model in healthcare.Finally,general trends are summarised and issues to consider addressing in future research on HMT in healthcare are identified.展开更多
Due to the need for massive device connectivity,low communication latency,and various customizations in 6G architecture,a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integra...Due to the need for massive device connectivity,low communication latency,and various customizations in 6G architecture,a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integrated network scenario.However,the openness and heterogeneity of the 6G network cause the problems of network security.To improve the trustworthiness of 6G networks,we propose a trusted computing-based approach for establishing trust relationships inmulti-cloud scenarios.The proposed method shows the relationship of trust based on dual-level verification.It separates the trustworthy states of multiple complex cloud units in 6G architecture into the state within and between cloud units.Firstly,SM3 algorithm establishes the chain of trust for the system’s trusted boot phase.Then,the remote attestation server(RAS)of distributed cloud units verifies the physical servers.Meanwhile,the physical servers use a ring approach to verify the cloud servers.Eventually,the centralized RAS takes one-time authentication to the critical evidence information of distributed cloud unit servers.Simultaneously,the centralized RAS also verifies the evidence of distributed RAS.We establish our proposed approach in a natural OpenStack-based cloud environment.The simulation results show that the proposed method achieves higher security with less than a 1%system performance loss.展开更多
The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents ...The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.展开更多
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid...With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.展开更多
文摘This paper aims to explore how a veteran teacher organizes online teaching initiated by the pandemic and how she deals with the problems in online teacher-student verbal interaction.By analyzing a corpus of 20 audio-recorded online lessons between a math teacher and her students during the COVID-19 pandemic from April 11 to May 10,2022,four interactional segments are selected as the focus of the study.The results of the conversation analysis of the segments showed that students’modesty,lack of confidence,lack of ability,and network delay are the main factors affecting online teacher-student interaction.By encouraging students to answer questions,enlightening students to give answers,enriching students’answers,and entertaining the teaching atmosphere(“4Es”strategies),the teacher solved the problems successfully.The findings from this study can provide pedagogical experience and implications for practical teaching.
文摘This case study examines the interaction through emails between a professor and one of his third-year students outside of the classroom to explore the problems in the teacher-student interaction.It shows that confronted with difficulties,the student turns directly to her teacher,yet failing to make her specific difficulties known,and the teacher spares no pains to exemplify the doing of assignments,yet knowing little about his student’s knowings and unknowings.At the end of the article are some enlightenments:seeking help after self-attempting and helping after knowing.
文摘Teacher-student collaborative assessment(TSCA)aims to address the challenges of responding to students’work in the Production-Oriented Approach:low efficiency and poor effectiveness.As part of a bigger project carried out in a Chinese university over a period of three years,the present study explored how the teacher prepared and implemented TSCA in class,especially with a focus on how she determined the assessing objective and worked collaboratively with her students in class to achieve it,using the students’written and translated texts as examples.By adopting the dialectical research(DR)method,this paper collected qualitative data such as teaching plans,classroom recordings,and reflective journals of the teacher-researcher(the author),along with students’written drafts and translated texts.TSCA theory and classroom practice have been refined simultaneously by means of putting theory into practice and reflecting upon it.The optimized pre-class and in-class procedures may shed some light on applying TSCA to L2 classrooms.
文摘This paper aimed to investigate the effect of teacher talk on teacher-student rapport in college English classroom.Be sides,it attempted to analyze how to build teacher-student rapport in English classroom based on the theories of teacher Talk,hoping that it can assist teachers to upgrade their awareness in teacher talk and increase language learning and teaching efficiency.
基金The Teaching Reform Project of Harbin Engineering University in 2018(A practical study of college oral English teaching mode under the mechanism of TSCA)Free Exploration Project of Basic Scientific Research of Central Universities in 2020.
文摘This article examines the application of Teacher-student Collaborative Assessment in college students’oral English.Qualitative Study data were collected during 16 weeks teaching practice and included the students’and the examiner’s interviews.The result indicates that most students’oral English has been improved.They prefer this assessment model,and their English learning interest and proficiency has been enhanced as well.
文摘This essay is an action research report, focusing on the analysis of a common problem in EFL teaching---passive class. By analyzing the data collected in an EFL class, the author testifies the hypotheses, reflects on some possible reasons for the passive class and proposes suggestions to improve the teacher-student interaction.
基金supported by the National Natural Science Foundation of China(62072392)the National Natural Science Foundation of China(61972360)the Major Scientific and Technological Innovation Projects of Shandong Province(2019522Y020131).
文摘The development of the Internet of Things(IoT)has brought great convenience to people.However,some information security problems such as privacy leakage are caused by communicating with risky users.It is a challenge to choose reliable users with which to interact in the IoT.Therefore,trust plays a crucial role in the IoT because trust may avoid some risks.Agents usually choose reliable users with high trust to maximize their own interests based on reinforcement learning.However,trust propagation is time-consuming,and trust changes with the interaction process in social networks.To track the dynamic changes in trust values,a dynamic trust inference algorithm named Dynamic Double DQN Trust(Dy-DDQNTrust)is proposed to predict the indirect trust values of two users without direct contact with each other.The proposed algorithm simulates the interactions among users by double DQN.Firstly,CurrentNet and TargetNet networks are used to select users for interaction.The users with high trust are chosen to interact in future iterations.Secondly,the trust value is updated dynamically until a reliable trust path is found according to the result of the interaction.Finally,the trust value between indirect users is inferred by aggregating the opinions from multiple users through a Modified Collaborative Filtering Averagebased Similarity(SMCFAvg)aggregation strategy.Experiments are carried out on the FilmTrust and the Epinions datasets.Compared with TidalTrust,MoleTrust,DDQNTrust,DyTrust and Dynamic Weighted Heuristic trust path Search algorithm(DWHS),our dynamic trust inference algorithm has higher prediction accuracy and better scalability.
文摘Teachers and students play important roles in teaching activity,and they are the most essential parts of the system.The relationship between teachers and students,the core schooling interpersonal relationship,directly determines whether the teach ing activities can go smoothly or not,and is an important index to measure the quality of teachers and students'school life,and also is an important factor that affects the social function of education.For a long time,relationship between teachers and students has been a hot topic in education and in different sectors of the society.This dissertation aims at discussing the teacher-student role changing in interactive teaching mode to provide reference for building a harmonious relationship between teachers and stu dents.
基金Collaborative education project of industry university cooperation of the Ministry of Education of China:Research on practice teaching of the competency of future mental health teachers based on virtual reality(No.202102080005).
文摘Objective:The study is to analyze the influence of parent-child relationship on pupils’learning motivation,and to explore the mediating mechanism of teacher-student relationship in parent-child relationship and learning motivation.Method:This study conducted a questionnaire survey on 213 pupils in Grades 5 and 6 in two schools in Beijing using Pianta’s teacher-student relationship scale revised by Qu,Dornbush’s parent-child intimacy scale revised by Zhang and the learning motivation scale adapted by Hu.Results:Gender,grade,whether they are the only child and to be a class cadre or not show significant differences in some dimensions of parent-child relationship,teacher-student relationship and learning motivation.The total scores of parent-child relationship,teacher-student relationship and learning motivation are positively correlated,and some sub dimensions are also significantly correlated.Parent-child relationship and teacher-student relationship have a significant positive predictive effect on learning motivation,and parent-child relationship has a significant positive predictive effect on teacher-student relationship.Teacher-student relationship plays a mediating role in the influence of parent-child relationship on learning motivation.Conclusions:Parent-child relationship can promote the relationship between teachers and students,and then enhance pupils’learning motivation.
文摘Low efficiency in teaching and time-consuming in writing evaluation are two big problems for college English teachers.Therefore,it is necessary to create a new teaching model to solve these problems existing in traditional classroom-based teaching.This research adopts the research methods of test comparison before and after the students’composition experiment,questionnaire and semi-open interviews.Empirical research on a new teaching model that integrates the intelligent composition review and reform system represented by Piangai.com and the collaborative evaluation of teachers and students is conducted.The research results show that the new writing teaching model improves the quality of students’writing,promotes students’learning initiative,and enhances students’writing self-efficacy.This writing teaching model provides ideas for solving the problem of time-consuming and inefficient English writing teaching in large classes.
基金supported by the National Natural Science Foundation of China(No.92267301).
文摘In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.
基金This project is partly funded by Science and Technology Project of State Grid Zhejiang Electric Power Co.,Ltd.“Research on active Security Defense Strategies for Distribution Internet of Things Based on Trustworthy,under Grant No.5211DS22000G”.
文摘The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field.
基金supported in part by the Chongqing Electronics Engineering Technology Research Center for Interactive Learningin part by the Chongqing key discipline of electronic informationin part by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201630)。
文摘Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.
基金supported the by Anhui Provincial Natural Science Foundation under Grant 2308085MF223in part by the Open Fund of State Key Laboratory for Novel Software Technology under Grant KFKT2022B33+1 种基金in part by the by the Foundation of Yunnan Key Laboratory of Service Computing under Grant YNSC23106in part by the Key Project on Anhui Provincial Natural Science Study by Colleges and Universities under Grant 2023AH050495,2024AH051078 and Grant KJ2020A0513.
文摘Advancements in the vehicular network technology enable real-time interconnection,data sharing,and intelligent cooperative driving among vehicles.However,malicious vehicles providing illegal and incorrect information can compromise the interests of vehicle users.Trust mechanisms serve as an effective solution to this issue.In recent years,many researchers have incorporated blockchain technology to manage and incentivize vehicle nodes,incurring significant overhead and storage requirements due to the frequent ingress and egress of vehicles within the area.In this paper,we propose a distributed vehicular network scheme based on trust scores.Specifically,the designed architecture partitions multiple vehicle regions into clusters.Then,cloud supervision systems(CSSs)verify the accuracy of the information transmitted by vehicles.Additionally,the trust scores for vehicles are calculated to reward or penalize them based on the trust evaluation model.Our proposed scheme demonstrates good scalability and effectively addresses the main cause of malicious information distribution among vehicles.Both theoretical and experimental analysis show that our scheme outperforms the compared schemes.
基金This work is supported by the 2022 National Key Research and Development Plan“Security Protection Technology for Critical Information Infrastructure of Distribution Network”(2022YFB3105100).
文摘First,we propose a cross-domain authentication architecture based on trust evaluation mechanism,including registration,certificate issuance,and cross-domain authentication processes.A direct trust evaluation mechanism based on the time decay factor is proposed,taking into account the influence of historical interaction records.We weight the time attenuation factor to each historical interaction record for updating and got the new historical record data.We refer to the beta distribution to enhance the flexibility and adaptability of the direct trust assessment model to better capture time trends in the historical record.Then we propose an autoencoder-based trust clustering algorithm.We perform feature extraction based on autoencoders.Kullback leibler(KL)divergence is used to calculate the reconstruction error.When constructing a convolutional autoencoder,we introduce convolutional neural networks to improve training efficiency and introduce sparse constraints into the hidden layer of the autoencoder.The sparse penalty term in the loss function measures the difference through the KL divergence.Trust clustering is performed based on the density based spatial clustering of applications with noise(DBSCAN)clustering algorithm.During the clustering process,edge nodes have a variety of trustworthy attribute characteristics.We assign different attribute weights according to the relative importance of each attribute in the clustering process,and a larger weight means that the attribute occupies a greater weight in the calculation of distance.Finally,we introduced adaptive weights to calculate comprehensive trust evaluation.Simulation experiments prove that our trust evaluation mechanism has excellent reliability and accuracy.
基金Qinglan Project of Jiangsu Province of China,Grant/Award Number:BK20180820National Natural Science Foundation of China,Grant/Award Numbers:12271255,61701243,71771125,72271126,12227808+2 种基金Major Projects of Natural Sciences of University in Jiangsu Province of China,Grant/Award Numbers:21KJA630001,22KJA630001Postgraduate Research and Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX23_2343supported by the National Natural Science Foundation of China(no.72271126,12271255,61701243,71771125,12227808)。
文摘As human‐machine interaction(HMI)in healthcare continues to evolve,the issue of trust in HMI in healthcare has been raised and explored.It is critical for the development and safety of healthcare that humans have proper trust in medical machines.Intelligent machines that have applied machine learning(ML)technologies continue to penetrate deeper into the medical environment,which also places higher demands on intelligent healthcare.In order to make machines play a role in HMI in healthcare more effectively and make human‐machine cooperation more harmonious,the authors need to build good humanmachine trust(HMT)in healthcare.This article provides a systematic overview of the prominent research on ML and HMT in healthcare.In addition,this study explores and analyses ML and three important factors that influence HMT in healthcare,and then proposes a HMT model in healthcare.Finally,general trends are summarised and issues to consider addressing in future research on HMT in healthcare are identified.
基金This work was supported by the Ministry of Education and China Mobile Research Fund Project(MCM20200102)the 173 Project(No.2019-JCJQ-ZD-342-00)+2 种基金the National Natural Science Foundation of China(No.U19A2081)the Fundamental Research Funds for the Central Universities(No.2023SCU12129)the Science and Engineering Connotation Development Project of Sichuan University(No.2020SCUNG129).
文摘Due to the need for massive device connectivity,low communication latency,and various customizations in 6G architecture,a distributed cloud deployment approach will be more relevant to the space-air-ground-sea integrated network scenario.However,the openness and heterogeneity of the 6G network cause the problems of network security.To improve the trustworthiness of 6G networks,we propose a trusted computing-based approach for establishing trust relationships inmulti-cloud scenarios.The proposed method shows the relationship of trust based on dual-level verification.It separates the trustworthy states of multiple complex cloud units in 6G architecture into the state within and between cloud units.Firstly,SM3 algorithm establishes the chain of trust for the system’s trusted boot phase.Then,the remote attestation server(RAS)of distributed cloud units verifies the physical servers.Meanwhile,the physical servers use a ring approach to verify the cloud servers.Eventually,the centralized RAS takes one-time authentication to the critical evidence information of distributed cloud unit servers.Simultaneously,the centralized RAS also verifies the evidence of distributed RAS.We establish our proposed approach in a natural OpenStack-based cloud environment.The simulation results show that the proposed method achieves higher security with less than a 1%system performance loss.
文摘The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.
基金The work was supported by Humanities and Social Sciences Fund of the Ministry of Education(No.22YJA630119)the National Natural Science Foundation of China(No.71971051)Natural Science Foundation of Hebei Province(No.G2021501004).
文摘With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.