期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Speech Endpoint Detection in Noisy Environments Using EMD and Teager Energy Operator 被引量:4
1
作者 De-Xiang Zhang Xiao-Pei Wu Zhao Lv 《Journal of Electronic Science and Technology》 CAS 2010年第2期183-186,共4页
Accurate endpoint detection is a necessary capability for speech recognition. A new energy measure method based on the empirical mode decomposition (EMD) algorithm and Teager energy operator (TEO) is proposed to l... Accurate endpoint detection is a necessary capability for speech recognition. A new energy measure method based on the empirical mode decomposition (EMD) algorithm and Teager energy operator (TEO) is proposed to locate endpoint intervals of a speech signal embedded in noise. With the EMD, the noise signals can be decomposed into different numbers of sub-signals called intrinsic mode functions (IMFs), which is a zero-mean AM-FM component. Then TEO can be used to extract the desired feature of the modulation energy for IMF components. In order to show the effectiveness of the proposed method, examples are presented to show that the new measure is more effective than traditional measures. The present experimental results show that the measure can be used to improve the performance of endpoint detection algorithms and the accuracy of this algorithm is quite satisfactory and acceptable. 展开更多
关键词 Index Terms----Empirical mode decomposition endpoint detection noisy speech teager energy operator.
下载PDF
HYBRID WAVELET PACKET-TEAGER ENERGY OPERATOR ANALYSIS AND ITS APPLICATION FOR GEARBOX FAULT DIAGNOSIS 被引量:6
2
作者 LIU Xiaofeng QIN Shuren BO Lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期79-83,共5页
Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and T... Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and TEO modulation are introduced respectively. The preprocessed sigaaal is interpolated with the cubic spline function, then expanded over the selected basis wavelets. Grouping its wavelet packet components of the signal based on the minimum entropy criterion, the interpolated signal can be decomposed into its dominant components with nearly distinct fault frequency contents. To extract the demodulation information of each dominant component, TEO is used. The performance of the proposed method is assessed by means of several tests on vibration signals collected from the gearbox mounted on a heavy truck. It is proved that hybrid WPD-TEO method is effective and robust for detecting and diagnosing localized gearbox faults. 展开更多
关键词 Wavelet packet teager energy operator Fault diagnosis Demodulation analysis
下载PDF
A robust feature extraction approach based on an auditory model for classification of speech and expressiveness 被引量:5
3
作者 孙颖 V.Werner 张雪英 《Journal of Central South University》 SCIE EI CAS 2012年第2期504-510,共7页
Based on an auditory model, the zero-crossings with maximal Teager energy operator (ZCMT) feature extraction approach was described, and then applied to speech and emotion recognition. Three kinds of experiments were ... Based on an auditory model, the zero-crossings with maximal Teager energy operator (ZCMT) feature extraction approach was described, and then applied to speech and emotion recognition. Three kinds of experiments were carried out. The first kind consists of isolated word recognition experiments in neutral (non-emotional) speech. The results show that the ZCMT approach effectively improves the recognition accuracy by 3.47% in average compared with the Teager energy operator (TEO). Thus, ZCMT feature can be considered as a noise-robust feature for speech recognition. The second kind consists of mono-lingual emotion recognition experiments by using the Taiyuan University of Technology (TYUT) and the Berlin databases. As the average recognition rate of ZCMT approach is 82.19%, the results indicate that the ZCMT features can characterize speech emotions in an effective way. The third kind consists of cross-lingual experiments with three languages. As the accuracy of ZCMT approach only reduced by 1.45%, the results indicate that the ZCMT features can characterize emotions in a language independent way. 展开更多
关键词 speech recognition emotion recognition zero-crossings teager energy operator speech database
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部