The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improv...The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.展开更多
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio...Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.展开更多
The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional ...The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform(IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.展开更多
Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact soluti...Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact solution obtained in the time/frequency domain is time-consuming and just as a reference value for approximate solutions;on the other hand, calculation errors and application range of approximate solutions not only rely on approximate algorithms but also on discharge modes. For the purpose to track the transient dynamics for Li solid-phase diffusion in spherical active particles with a tolerable error range and for a wide applicable range, it is necessary to choose optimal approximate algorithms in terms of discharge modes and the nature of active material particles. In this study, approximation methods,such as diffusion length method, polynomial profile approximation method, Padé approximation method,pseudo steady state method, eigenfunction-based Galerkin collocation method, and separation of variables method for solving Li solid-phase diffusion in spherical active particles are compared from calculation fundamentals to algorithm implementation. Furthermore, these approximate solutions are quantitatively compared to the quasi-exact/exact solution in the time/frequency domain under typical discharge modes, i.e., start-up, slow-down, and speed-up. The results obtained from the viewpoint of time-frequency analysis offer a theoretical foundation on how to track Li transient concentration profile in spherical active particles with a high precision and for a wide application range. In turn, optimal solutions of Li solid diffusion equations for spherical active particles can improve the reliability in predicting safe operating regime and estimating maximum power for automotive batteries.展开更多
A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequ...A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequency extraction becomes curve detection in the image-view. A set of morphological operations are used to implement curve detection. And a map fusion scheme is presented to eliminate the influence of strong direct current (DC) component of echo signal during curve detection. The radar real-life data are used to illustrate the performance of the new approach. Experimental results show that the proposed method can overcome the shortcomings of piecewise-processing-based FFT method and can improve the measuring precision of miss distance.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr...Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.展开更多
With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. Howev...With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. However, due to the complexity of SAR imaging mechanism, interpreting targets in SAR images is a tough problem. This paper presents a new aircraft interpretation method based on the joint time-frequency analysis and multi-dimensional contrasting of basic structures. Moreover, SAR data acquisition experiment is designed for interpreting the aircraft. Analyzing the experiment data with our method, the result shows that the proposed method largely makes use of the SAR data information. The reasonable results can provide some auxiliary support for the SAR images manual interpretation.展开更多
In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) da...In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) data were recorded according to the modified 10-20 International EEG System. The patterns were compared by the analysis of the motion-evoked EEG signals focusing on the contralateral(C3) and ipsilateral(C4) channels for hemispheric differences. The EEG energy distributions at alpha(8—13 Hz), beta(14—30 Hz) and gamma(30—50 Hz) bands were computed by wavelet transform(WT) and compared by the analysis of variance(ANOVA). The timefrequency(TF) analysis indicated that there existed a contralateral dominance of alpha post-movement event-related synchronization(ERS) pattern during the voluntary task, and that the energy of alpha band increased in the ipsilateral area during the stimulated(median nerve of wrist) task. Besides, the contralateral alpha and beta event-related desynchronization(ERD) patterns were observed in both stimulated and imaginary tasks. Another significant difference was found in the mean power values of gamma band(p<0.01)between the imaginary and other tasks. The results show that significant hemispheric differences such as alpha and beta band EEG energy distributions and TF changing phenomena(ERS/ERD) were found between C3 and C4 areas during all of the three patterns. The largest energy distribution was always at the alpha band for each task.展开更多
Objective: To analyze the non-periodic, unstable and even chaotic echoes scattered from microbubbles which are extremely sensitive and may easily collapse, fragment or shrink when ultrasound contrast agents are expose...Objective: To analyze the non-periodic, unstable and even chaotic echoes scattered from microbubbles which are extremely sensitive and may easily collapse, fragment or shrink when ultrasound contrast agents are exposed to ultrasound (US) irradiation. Methods: The combined time-frequency analysis was applied to the original signals instead of the traditional Fourier spectral analysis technique. Results: The results obtained from simulation as well as experiment showed that the subharmonic, 2nd harmonic and ultra harmonic of the microbubbles occurred during the oscillation and varied with time. The dependence on the incident ultrasonic amplitude and microbubble parameters were established. Conclusion: The transient echoes backscattered from the ultrasound agent in the evaluation of the blood perfusion can be analyzed thoroughly by the technique of combined-frequency analysis and the time detail of the frequency contents can be revealed.展开更多
A method of time-frequency analysis (TFA) based on wavelets is applied to study the phase space structure of three-dimensional asymmetric triaxial galaxy enclosed by spherical dark halo component. The investigation is...A method of time-frequency analysis (TFA) based on wavelets is applied to study the phase space structure of three-dimensional asymmetric triaxial galaxy enclosed by spherical dark halo component. The investigation is carried out in the presence and absence of dark halo component. Time-frequency analysis is based on the extraction of instantaneous frequency from the phase of the continuous wavelet transform. This method is comparatively fast and reliable. This method can differentiate periodic from quasi-periodic, chaotic sticky from chaotic non-sticky, ordered from chaotic and also, it can accurately determine the time interval of the resonance trapping and transitions too. Apart from that, the phenomenon of transient chaos can be explained with the help of time-frequency analysis. Comparison with the method of total angular momentum (denoted as Ltot) proposed recently is also presented.展开更多
The local wave method is a very good time-frequency method for nonstationaryvibration signal analysis. But the interfering noise has a big influence on the accuracy oftime-frequency analysis. The wavelet packet de-noi...The local wave method is a very good time-frequency method for nonstationaryvibration signal analysis. But the interfering noise has a big influence on the accuracy oftime-frequency analysis. The wavelet packet de-noising method can eliminate the interference ofnoise and improve the signal-noise-ratio. This paper uses the local wave method to decompose thede-noising signal and perform a time-frequency analysis. We can get better characteristics. Finally,an example of wavelet packet de-noising and a local wave time-frequency spectrum application ofdiesel engine surface vibration signal is put forward.展开更多
Nyquist Folding Receiver(NYFR)is a perceptron structure that realizes a low probability of intercept(LPI)signal analog to information.Aiming at the problem of LPI radar signal receiving,the time domain,frequency domai...Nyquist Folding Receiver(NYFR)is a perceptron structure that realizes a low probability of intercept(LPI)signal analog to information.Aiming at the problem of LPI radar signal receiving,the time domain,frequency domain,and time-frequency domain problems of signals intercepted by NYFR structure are studied.Combined with the time-frequency analysis(TFA)method,a radar recognition scheme based on deep learning(DL)is introduced,which can reliably classify common LPI radar signals.First,the structure of NYFR and its characteristics in the time domain,frequency domain,and time and frequency domain are analyzed.Then,the received signal is then converted into a time-frequency image(TFI).Finally,four kinds of DL algorithms are used to classify LPI radar signals.Simulation results demonstrate the correctness of the NYFR structure,and the effectiveness of the proposed recognition method is verified by comparison experiments.展开更多
Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and T...Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and TEO modulation are introduced respectively. The preprocessed sigaaal is interpolated with the cubic spline function, then expanded over the selected basis wavelets. Grouping its wavelet packet components of the signal based on the minimum entropy criterion, the interpolated signal can be decomposed into its dominant components with nearly distinct fault frequency contents. To extract the demodulation information of each dominant component, TEO is used. The performance of the proposed method is assessed by means of several tests on vibration signals collected from the gearbox mounted on a heavy truck. It is proved that hybrid WPD-TEO method is effective and robust for detecting and diagnosing localized gearbox faults.展开更多
变压器等电气设备的吊装、转运环节是疏于监控的薄弱环节,极易发生由机械冲击引起的二次损伤。对变压器轨道运输车行进过程中受路基振动引起的冲击响应开展研究。首先,建立了轨道运输车⁃变压器耦合分析模型,利用有限元分析得出轨道运输...变压器等电气设备的吊装、转运环节是疏于监控的薄弱环节,极易发生由机械冲击引起的二次损伤。对变压器轨道运输车行进过程中受路基振动引起的冲击响应开展研究。首先,建立了轨道运输车⁃变压器耦合分析模型,利用有限元分析得出轨道运输车⁃变压器耦合分析模型在路基振动作用下的核心响应区域。然后,提出了一种基于小波包散布熵的非周期瞬态响应特征提取方法。该方法通过小波包最优子带树结构对整个频带进行良好的稀疏性分割,将包含多种信息的一维数据分解到不同维度,实现信号的有效分解,通过Teager能量算子(Teager Energy Operator,TEO)增强子带信号的冲击特性,利用散布熵选取包含冲击响应特征的子带信号。最后,通过路基振动仿真信号验证了所提方法能够准确从耦合路径干扰中提取出非周期性瞬态冲击响应成分。展开更多
The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time...The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.展开更多
According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a hi...According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluid- saturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly.展开更多
Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyze...Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.展开更多
In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effect...In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effectively. Improving the signal resolution is the key to signal time-frequency analysis processing and has wide use in geophysical data processing and extraction of attribute parameters. In this paper, authors research the effects of the attenuation coefficient choice of the Gabor transform window function and sampling interval on signal resolution. Unsuitable parameters not only decrease the signal resolution on the frequency spectrum but also miss the signals. It is essential to first give the optimum window and range of parameters through time-frequency analysis simulation using the Gabor transform. In the paper, the suggestions about the range and choice of the optimum sampling interval and processing methods of general seismic signals are given.展开更多
In this study, several advanced analysis methods are applied to understand the relationships between the Nino-3.4 sea surface temperatures (SST) and the SSTs related to the tropical Indian Ocean Dipole (IOD). By a...In this study, several advanced analysis methods are applied to understand the relationships between the Nino-3.4 sea surface temperatures (SST) and the SSTs related to the tropical Indian Ocean Dipole (IOD). By analyzing a long data record, the authors focus on the time-frequency characteristics of these relationships, and of the structure of IOD. They also focus on the seasonal dependence of those characteristics in both time and frequency domains. Among the Nino-3.4 SST, IOD, and SSTs over the tropical western Indian Ocean (WIO) and eastern Indian Ocean (EIO), the WIO SST has the strongest annual and semiannual oscillations. While the Nino-3.4 SST has large inter-annual variability that is only second to its annual variability, the IOD is characterized by the largest semiannual oscillation, which is even stronger than its annual oscillation. The IOD is strongly and stably related to the EIO SST in a wide range of frequency bands and in all seasons. However, it is less significantly related to the WIO SST in the boreal winter and spring. There exists a generally weak and unstable relationship between the WIO and EIO SSTs, especially in the biennial and higher frequency bands. The relationship is especially weak in summer and fall, when IOD is apparent, but appears highly positive in winter and spring, when the IOD is unimportantly weak and even disappears. This feature reflects a caution in the definition and application of IOD. The Nino-3.4 SST has a strong positive relationship with the WIO SST in all seasons, mainly in the biennial and longer frequency bands. However, it shows no significant relationship with the EIO SST in summer and fall, and with IOD in winter and spring.展开更多
基金Supported by the National Science Foundation of China(42055402)。
文摘The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.
基金support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802).
文摘Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.
基金supported by the National Natural Science Foundation of China (61871146)the Fundamental Research Funds for the Central Universities (FRFCU5710093720)。
文摘The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform(IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.
基金the financial support from the National Science Foundation of China(22078190 and 12002196)the National Key Research and Development Program of China(2020YFB1505802)。
文摘Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact solution obtained in the time/frequency domain is time-consuming and just as a reference value for approximate solutions;on the other hand, calculation errors and application range of approximate solutions not only rely on approximate algorithms but also on discharge modes. For the purpose to track the transient dynamics for Li solid-phase diffusion in spherical active particles with a tolerable error range and for a wide applicable range, it is necessary to choose optimal approximate algorithms in terms of discharge modes and the nature of active material particles. In this study, approximation methods,such as diffusion length method, polynomial profile approximation method, Padé approximation method,pseudo steady state method, eigenfunction-based Galerkin collocation method, and separation of variables method for solving Li solid-phase diffusion in spherical active particles are compared from calculation fundamentals to algorithm implementation. Furthermore, these approximate solutions are quantitatively compared to the quasi-exact/exact solution in the time/frequency domain under typical discharge modes, i.e., start-up, slow-down, and speed-up. The results obtained from the viewpoint of time-frequency analysis offer a theoretical foundation on how to track Li transient concentration profile in spherical active particles with a high precision and for a wide application range. In turn, optimal solutions of Li solid diffusion equations for spherical active particles can improve the reliability in predicting safe operating regime and estimating maximum power for automotive batteries.
基金the Ministerial Level Advanced Research Foundation(020045089)
文摘A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequency extraction becomes curve detection in the image-view. A set of morphological operations are used to implement curve detection. And a map fusion scheme is presented to eliminate the influence of strong direct current (DC) component of echo signal during curve detection. The radar real-life data are used to illustrate the performance of the new approach. Experimental results show that the proposed method can overcome the shortcomings of piecewise-processing-based FFT method and can improve the measuring precision of miss distance.
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
文摘Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.
文摘With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. However, due to the complexity of SAR imaging mechanism, interpreting targets in SAR images is a tough problem. This paper presents a new aircraft interpretation method based on the joint time-frequency analysis and multi-dimensional contrasting of basic structures. Moreover, SAR data acquisition experiment is designed for interpreting the aircraft. Analyzing the experiment data with our method, the result shows that the proposed method largely makes use of the SAR data information. The reasonable results can provide some auxiliary support for the SAR images manual interpretation.
基金Supported by the National Natural Science Foundation of China(No.81222021,No.61172008,No.81171423)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAI34B02)Program for New Century Excellent Talents in University of the Ministry of Education of China(No.NCET-10-0618)
文摘In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) data were recorded according to the modified 10-20 International EEG System. The patterns were compared by the analysis of the motion-evoked EEG signals focusing on the contralateral(C3) and ipsilateral(C4) channels for hemispheric differences. The EEG energy distributions at alpha(8—13 Hz), beta(14—30 Hz) and gamma(30—50 Hz) bands were computed by wavelet transform(WT) and compared by the analysis of variance(ANOVA). The timefrequency(TF) analysis indicated that there existed a contralateral dominance of alpha post-movement event-related synchronization(ERS) pattern during the voluntary task, and that the energy of alpha band increased in the ipsilateral area during the stimulated(median nerve of wrist) task. Besides, the contralateral alpha and beta event-related desynchronization(ERD) patterns were observed in both stimulated and imaginary tasks. Another significant difference was found in the mean power values of gamma band(p<0.01)between the imaginary and other tasks. The results show that significant hemispheric differences such as alpha and beta band EEG energy distributions and TF changing phenomena(ERS/ERD) were found between C3 and C4 areas during all of the three patterns. The largest energy distribution was always at the alpha band for each task.
文摘Objective: To analyze the non-periodic, unstable and even chaotic echoes scattered from microbubbles which are extremely sensitive and may easily collapse, fragment or shrink when ultrasound contrast agents are exposed to ultrasound (US) irradiation. Methods: The combined time-frequency analysis was applied to the original signals instead of the traditional Fourier spectral analysis technique. Results: The results obtained from simulation as well as experiment showed that the subharmonic, 2nd harmonic and ultra harmonic of the microbubbles occurred during the oscillation and varied with time. The dependence on the incident ultrasonic amplitude and microbubble parameters were established. Conclusion: The transient echoes backscattered from the ultrasound agent in the evaluation of the blood perfusion can be analyzed thoroughly by the technique of combined-frequency analysis and the time detail of the frequency contents can be revealed.
文摘A method of time-frequency analysis (TFA) based on wavelets is applied to study the phase space structure of three-dimensional asymmetric triaxial galaxy enclosed by spherical dark halo component. The investigation is carried out in the presence and absence of dark halo component. Time-frequency analysis is based on the extraction of instantaneous frequency from the phase of the continuous wavelet transform. This method is comparatively fast and reliable. This method can differentiate periodic from quasi-periodic, chaotic sticky from chaotic non-sticky, ordered from chaotic and also, it can accurately determine the time interval of the resonance trapping and transitions too. Apart from that, the phenomenon of transient chaos can be explained with the help of time-frequency analysis. Comparison with the method of total angular momentum (denoted as Ltot) proposed recently is also presented.
文摘The local wave method is a very good time-frequency method for nonstationaryvibration signal analysis. But the interfering noise has a big influence on the accuracy oftime-frequency analysis. The wavelet packet de-noising method can eliminate the interference ofnoise and improve the signal-noise-ratio. This paper uses the local wave method to decompose thede-noising signal and perform a time-frequency analysis. We can get better characteristics. Finally,an example of wavelet packet de-noising and a local wave time-frequency spectrum application ofdiesel engine surface vibration signal is put forward.
基金supported by the National Defence Pre-research Foundation of China。
文摘Nyquist Folding Receiver(NYFR)is a perceptron structure that realizes a low probability of intercept(LPI)signal analog to information.Aiming at the problem of LPI radar signal receiving,the time domain,frequency domain,and time-frequency domain problems of signals intercepted by NYFR structure are studied.Combined with the time-frequency analysis(TFA)method,a radar recognition scheme based on deep learning(DL)is introduced,which can reliably classify common LPI radar signals.First,the structure of NYFR and its characteristics in the time domain,frequency domain,and time and frequency domain are analyzed.Then,the received signal is then converted into a time-frequency image(TFI).Finally,four kinds of DL algorithms are used to classify LPI radar signals.Simulation results demonstrate the correctness of the NYFR structure,and the effectiveness of the proposed recognition method is verified by comparison experiments.
基金This project is supported by National Natural Science Foundation of China (No.50605065)Natural Science Foundation Project of CQ CSTC (No.2007BB2142)
文摘Based on wavelet packet decomposition (WPD) algorithm and Teager energy operator (TEO), a novel gearbox fault detection and diagnosis method is proposed. Its process is expatiated after the principles of WPD and TEO modulation are introduced respectively. The preprocessed sigaaal is interpolated with the cubic spline function, then expanded over the selected basis wavelets. Grouping its wavelet packet components of the signal based on the minimum entropy criterion, the interpolated signal can be decomposed into its dominant components with nearly distinct fault frequency contents. To extract the demodulation information of each dominant component, TEO is used. The performance of the proposed method is assessed by means of several tests on vibration signals collected from the gearbox mounted on a heavy truck. It is proved that hybrid WPD-TEO method is effective and robust for detecting and diagnosing localized gearbox faults.
文摘变压器等电气设备的吊装、转运环节是疏于监控的薄弱环节,极易发生由机械冲击引起的二次损伤。对变压器轨道运输车行进过程中受路基振动引起的冲击响应开展研究。首先,建立了轨道运输车⁃变压器耦合分析模型,利用有限元分析得出轨道运输车⁃变压器耦合分析模型在路基振动作用下的核心响应区域。然后,提出了一种基于小波包散布熵的非周期瞬态响应特征提取方法。该方法通过小波包最优子带树结构对整个频带进行良好的稀疏性分割,将包含多种信息的一维数据分解到不同维度,实现信号的有效分解,通过Teager能量算子(Teager Energy Operator,TEO)增强子带信号的冲击特性,利用散布熵选取包含冲击响应特征的子带信号。最后,通过路基振动仿真信号验证了所提方法能够准确从耦合路径干扰中提取出非周期性瞬态冲击响应成分。
基金funded by the National Basic Research Program of China(973 Program)(No.2011 CB201002)the National Natural Science Foundation of China(No.41374117)the great and special projects(2011ZX05005–005-008HZ and 2011ZX05006-002)
文摘The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.
基金supported by the National Science and Technology Major Project (No. 2011ZX05019-008)the National Natural Science Foundation of China (No. 41074080)+1 种基金the Science Foundation of China University of Petroleum, Beijing (No. KYJJ2012-05-11)supported by the CNPC international collaboration program through the Edinburgh Anisotropy Project (EAP) of the British Geological Survey (BGS) and the CNPC Key Geophysical Laboratory at the China University of Petroleum and CNPC geophysical prospecting projects for new method and technique research
文摘According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluid- saturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly.
基金The National Natural Science Foundation of China(No.61301295,61273266,61301219,61201326,61003131)the Natural Science Foundation of Anhui Province(No.1308085QF100,1408085MF113)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20130241)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJB510021)the Doctoral Fund of Anhui University
文摘Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.
基金This work was funded by National Natural Science Foundation of China-(No. 40474044).
文摘In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effectively. Improving the signal resolution is the key to signal time-frequency analysis processing and has wide use in geophysical data processing and extraction of attribute parameters. In this paper, authors research the effects of the attenuation coefficient choice of the Gabor transform window function and sampling interval on signal resolution. Unsuitable parameters not only decrease the signal resolution on the frequency spectrum but also miss the signals. It is essential to first give the optimum window and range of parameters through time-frequency analysis simulation using the Gabor transform. In the paper, the suggestions about the range and choice of the optimum sampling interval and processing methods of general seismic signals are given.
文摘In this study, several advanced analysis methods are applied to understand the relationships between the Nino-3.4 sea surface temperatures (SST) and the SSTs related to the tropical Indian Ocean Dipole (IOD). By analyzing a long data record, the authors focus on the time-frequency characteristics of these relationships, and of the structure of IOD. They also focus on the seasonal dependence of those characteristics in both time and frequency domains. Among the Nino-3.4 SST, IOD, and SSTs over the tropical western Indian Ocean (WIO) and eastern Indian Ocean (EIO), the WIO SST has the strongest annual and semiannual oscillations. While the Nino-3.4 SST has large inter-annual variability that is only second to its annual variability, the IOD is characterized by the largest semiannual oscillation, which is even stronger than its annual oscillation. The IOD is strongly and stably related to the EIO SST in a wide range of frequency bands and in all seasons. However, it is less significantly related to the WIO SST in the boreal winter and spring. There exists a generally weak and unstable relationship between the WIO and EIO SSTs, especially in the biennial and higher frequency bands. The relationship is especially weak in summer and fall, when IOD is apparent, but appears highly positive in winter and spring, when the IOD is unimportantly weak and even disappears. This feature reflects a caution in the definition and application of IOD. The Nino-3.4 SST has a strong positive relationship with the WIO SST in all seasons, mainly in the biennial and longer frequency bands. However, it shows no significant relationship with the EIO SST in summer and fall, and with IOD in winter and spring.