为了解决滚动轴承振动信号中微弱故障信息难以提取的问题,提出了一种基于奇异值分解(Singular Value Decomposition,SVD)和Teager-Kaiser能量算子(Teager-Kaiser Energy Operator,TKEO)的轴承振动信号特征提取方法。采用SVD将突变信息...为了解决滚动轴承振动信号中微弱故障信息难以提取的问题,提出了一种基于奇异值分解(Singular Value Decomposition,SVD)和Teager-Kaiser能量算子(Teager-Kaiser Energy Operator,TKEO)的轴承振动信号特征提取方法。采用SVD将突变信息从背景噪声和光滑信号中分离,提取信号的突变信息;利用TKEO计算突变信息的瞬时能量,对该能量信号进行频谱分析,从而提取出轴承振动信号的能量频谱特征,用于故障检测。将该方法应用于轴承外圈、内圈局部故障状态下的振动信号特征提取,利用特征信息能够准确检测并识别出故障类型,表明了该方法的可行性和有效性。展开更多
如何在含有噪声的振动信号中提取故障特征,是轴承故障诊断的关键问题,为此本文提出一种基于本征时间尺度分解(Intrinsic Time-scale Decomposition,ITD)和敏感奇异值分解(Sensitive Singular Value Decomposition,SSVD)的故障诊断方法....如何在含有噪声的振动信号中提取故障特征,是轴承故障诊断的关键问题,为此本文提出一种基于本征时间尺度分解(Intrinsic Time-scale Decomposition,ITD)和敏感奇异值分解(Sensitive Singular Value Decomposition,SSVD)的故障诊断方法.首先对时域振动信号进行ITD预处理,并根据峭度准则选取包含故障信息的敏感旋转(Proper Rotation,PR)分量用于振动信号重构,以凸显振动信号局部特征;然后对此时频信号进行敏感SVD分析,通过敏感因子及定位因子选择敏感SVD分量重构信号,以滤除噪声干扰,提取微弱故障信息;最后利用Teager-Kaiser能量算子(Teager-Kaiser Energy Operator,TKEO)计算故障信息的瞬时能量,并对其进行频谱分析,获取故障特征频率,用于识别故障类型.将此方法应用于轴承故障诊断,实验证明了所提方法的有效性.展开更多
文摘为了解决滚动轴承振动信号中微弱故障信息难以提取的问题,提出了一种基于奇异值分解(Singular Value Decomposition,SVD)和Teager-Kaiser能量算子(Teager-Kaiser Energy Operator,TKEO)的轴承振动信号特征提取方法。采用SVD将突变信息从背景噪声和光滑信号中分离,提取信号的突变信息;利用TKEO计算突变信息的瞬时能量,对该能量信号进行频谱分析,从而提取出轴承振动信号的能量频谱特征,用于故障检测。将该方法应用于轴承外圈、内圈局部故障状态下的振动信号特征提取,利用特征信息能够准确检测并识别出故障类型,表明了该方法的可行性和有效性。
文摘如何在含有噪声的振动信号中提取故障特征,是轴承故障诊断的关键问题,为此本文提出一种基于本征时间尺度分解(Intrinsic Time-scale Decomposition,ITD)和敏感奇异值分解(Sensitive Singular Value Decomposition,SSVD)的故障诊断方法.首先对时域振动信号进行ITD预处理,并根据峭度准则选取包含故障信息的敏感旋转(Proper Rotation,PR)分量用于振动信号重构,以凸显振动信号局部特征;然后对此时频信号进行敏感SVD分析,通过敏感因子及定位因子选择敏感SVD分量重构信号,以滤除噪声干扰,提取微弱故障信息;最后利用Teager-Kaiser能量算子(Teager-Kaiser Energy Operator,TKEO)计算故障信息的瞬时能量,并对其进行频谱分析,获取故障特征频率,用于识别故障类型.将此方法应用于轴承故障诊断,实验证明了所提方法的有效性.