6061Al matrix composites reinforced by 5vol.%ABOw and 15vol.%SiCp were fabricated by semi-solid stirring technique successfully at 640 ℃ for 40min with the stirring rate of 300 rpm,and the composites were extruded at...6061Al matrix composites reinforced by 5vol.%ABOw and 15vol.%SiCp were fabricated by semi-solid stirring technique successfully at 640 ℃ for 40min with the stirring rate of 300 rpm,and the composites were extruded at a temperature of 500 ℃ using an extrusion ratio of 25:1 subsequently.Tensile tests were performed on as-casted and as-extruded(ABOw+SiCp)/6061Al composites at room temperature,and microstructures were observed by scanning electron microscope(SEM).SEM investigation showed that the as-extruded composite exhibited reduced porosity as well as a more uniform distribution of the reinforcements compared with the as-casted composite.The tensile tests results showed that the ultimate tensile strength and tensile elongation of as-extruded composite are higher than that of as-casted composite.展开更多
An investigation was made on the influences of mechanical stirring on microstructure of hyper-eutectic Al-30%Si alloy (inmass fraction) during solidification. The primary Si crystals formed in the alloy melt were grad...An investigation was made on the influences of mechanical stirring on microstructure of hyper-eutectic Al-30%Si alloy (inmass fraction) during solidification. The primary Si crystals formed in the alloy melt were gradually changed from elongated platelets tonear-spherical shapes by mechanical stirring. The spheroidization of primary St crystals occurs by the mechanism of bending and fractureof Si platelets, wear and collision between Si crystals, and coalescence of small Si particles. The influence of under-cooling and coolingrate of the alloy melt on primary Si crystals of semi-solid processed alloys is investigated as well. The increase of under-cooling andcooling rate decreases the size of primary Si crystals.展开更多
This article reviews the status of thermomechanical analysis of the friction stir welding(FSW)process for establishing guidelines for further investigation,filling the available research gaps,and expanding FSW applica...This article reviews the status of thermomechanical analysis of the friction stir welding(FSW)process for establishing guidelines for further investigation,filling the available research gaps,and expanding FSW applications.Firstly,the advantages and applications of FSW process are introduced,and the significance and key issues for thermomechanical analysis in FSW are pointed out.Then,solid mechanic and fluid dynamic methods in modeling FSW process are described,and the key issues in modeling FSW are discussed.Di erent available mesh modeling techniques including the applications,benefits and shortcomings are explained.After that,at different subsections,the thermomechanical analysis in FSW of aluminum alloys and steels are examined and summarized in depth.Finally,the conclusions and summary are presented in order to investigate the lack of knowledge and the possibilities for future study of each method and each material.展开更多
基金Funded by the Nationd Natural Science Foundation of China (No.2006CB605 203-3)
文摘6061Al matrix composites reinforced by 5vol.%ABOw and 15vol.%SiCp were fabricated by semi-solid stirring technique successfully at 640 ℃ for 40min with the stirring rate of 300 rpm,and the composites were extruded at a temperature of 500 ℃ using an extrusion ratio of 25:1 subsequently.Tensile tests were performed on as-casted and as-extruded(ABOw+SiCp)/6061Al composites at room temperature,and microstructures were observed by scanning electron microscope(SEM).SEM investigation showed that the as-extruded composite exhibited reduced porosity as well as a more uniform distribution of the reinforcements compared with the as-casted composite.The tensile tests results showed that the ultimate tensile strength and tensile elongation of as-extruded composite are higher than that of as-casted composite.
文摘An investigation was made on the influences of mechanical stirring on microstructure of hyper-eutectic Al-30%Si alloy (inmass fraction) during solidification. The primary Si crystals formed in the alloy melt were gradually changed from elongated platelets tonear-spherical shapes by mechanical stirring. The spheroidization of primary St crystals occurs by the mechanism of bending and fractureof Si platelets, wear and collision between Si crystals, and coalescence of small Si particles. The influence of under-cooling and coolingrate of the alloy melt on primary Si crystals of semi-solid processed alloys is investigated as well. The increase of under-cooling andcooling rate decreases the size of primary Si crystals.
基金Supported by National Natural Science Foundation of China(Grant Nos.51475272,51842507)Key R&D Program of Shandong Province in China(Grant No.2018GGX103001).
文摘This article reviews the status of thermomechanical analysis of the friction stir welding(FSW)process for establishing guidelines for further investigation,filling the available research gaps,and expanding FSW applications.Firstly,the advantages and applications of FSW process are introduced,and the significance and key issues for thermomechanical analysis in FSW are pointed out.Then,solid mechanic and fluid dynamic methods in modeling FSW process are described,and the key issues in modeling FSW are discussed.Di erent available mesh modeling techniques including the applications,benefits and shortcomings are explained.After that,at different subsections,the thermomechanical analysis in FSW of aluminum alloys and steels are examined and summarized in depth.Finally,the conclusions and summary are presented in order to investigate the lack of knowledge and the possibilities for future study of each method and each material.