This article proposes a comprehensive monitoring system for tunnel operation to address the risks associated with tunnel operations.These risks include safety control risks,increased traffic flow,extreme weather event...This article proposes a comprehensive monitoring system for tunnel operation to address the risks associated with tunnel operations.These risks include safety control risks,increased traffic flow,extreme weather events,and movement of tectonic plates.The proposed system is based on the Internet of Things and artificial intelligence identification technology.The monitoring system will cover various aspects of tunnel operations,such as the slope of the entrance,the structural safety of the cave body,toxic and harmful gases that may appear during operation,excessively high and low-temperature humidity,poor illumination,water leakage or road water accumulation caused by extreme weather,combustion and smoke caused by fires,and more.The system will enable comprehensive monitoring and early warning of fire protection systems,accident vehicles,and overheating vehicles.This will effectively improve safety during tunnel operation.展开更多
Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible t...Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible to cybersecurity threats due to its reliance on low-power biomedical devices and the use of open wireless channels for communication.In this article,we intend to address this shortcoming,and as a result,we propose a new scheme called,the certificateless anonymous authentication(CAA)scheme.The proposed scheme is based on hyperelliptic curve cryptography(HECC),an enhanced variant of elliptic curve cryptography(ECC)that employs a smaller key size of 80 bits as compared to 160 bits.The proposed scheme is secure against various attacks in both formal and informal security analyses.The formal study makes use of the Real-or-Random(ROR)model.A thorough comparative study of the proposed scheme is conducted for the security and efficiency of the proposed scheme with the relevant existing schemes.The results demonstrate that the proposed scheme not only ensures high security for health-related data but also increases efficiency.The proposed scheme’s computation cost is 2.88 ms,and the communication cost is 1440 bits,which shows its better efficiency compared to its counterpart schemes.展开更多
The Internet of Things(IoT)is a smart networking infrastructure of physical devices,i.e.,things,that are embedded with sensors,actuators,software,and other technologies,to connect and share data with the respective se...The Internet of Things(IoT)is a smart networking infrastructure of physical devices,i.e.,things,that are embedded with sensors,actuators,software,and other technologies,to connect and share data with the respective server module.Although IoTs are cornerstones in different application domains,the device’s authenticity,i.e.,of server(s)and ordinary devices,is the most crucial issue and must be resolved on a priority basis.Therefore,various field-proven methodologies were presented to streamline the verification process of the communicating devices;however,location-aware authentication has not been reported as per our knowledge,which is a crucial metric,especially in scenarios where devices are mobile.This paper presents a lightweight and location-aware device-to-server authentication technique where the device’s membership with the nearest server is subjected to its location information along with other measures.Initially,Media Access Control(MAC)address and Advance Encryption Scheme(AES)along with a secret shared key,i.e.,λ_(i) of 128 bits,have been utilized by Trusted Authority(TA)to generate MaskIDs,which are used instead of the original ID,for every device,i.e.,server and member,and are shared in the offline phase.Secondly,TA shares a list of authentic devices,i.e.,server S_(j) and members C_(i),with every device in the IoT for the onward verification process,which is required to be executed before the initialization of the actual communication process.Additionally,every device should be located such that it lies within the coverage area of a server,and this location information is used in the authentication process.A thorough analytical analysis was carried out to check the susceptibility of the proposed and existing authentication approaches against well-known intruder attacks,i.e.,man-in-the-middle,masquerading,device,and server impersonations,etc.,especially in the IoT domain.Moreover,proposed authentication and existing state-of-the-art approaches have been simulated in the real environment of IoT to verify their performance,particularly in terms of various evaluation metrics,i.e.,processing,communication,and storage overheads.These results have verified the superiority of the proposed scheme against existing state-of-the-art approaches,preferably in terms of communication,storage,and processing costs.展开更多
Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is ...Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is still thebiggest challenge for its deployment. The main goal of IoT security is to ensure the accessibility of services providedby an IoT environment, protect privacy, and confidentiality, and guarantee the safety of IoT users, infrastructures,data, and devices. Authentication, as the first line of defense against security threats, becomes the priority ofeveryone. It can either grant or deny users access to resources according to their legitimacy. As a result, studyingand researching authentication issues within IoT is extremely important. As a result, studying and researchingauthentication issues within IoT is extremely important. This article presents a comparative study of recent researchin IoT security;it provides an analysis of recent authentication protocols from2019 to 2023 that cover several areaswithin IoT (such as smart cities, healthcare, and industry). This survey sought to provide an IoT security researchsummary, the biggest susceptibilities, and attacks, the appropriate technologies, and the most used simulators. Itillustrates that the resistance of protocols against attacks, and their computational and communication cost arelinked directly to the cryptography technique used to build it. Furthermore, it discusses the gaps in recent schemesand provides some future research directions.展开更多
With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analy...With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analysis tasks such as behaviour recognition.These applications have dramatically increased the diversity of IoT systems.Specifically,behaviour recognition in videos usually requires a combinatorial analysis of the spatial information about objects and information about their dynamic actions in the temporal dimension.Behaviour recognition may even rely more on the modeling of temporal information containing short-range and long-range motions,in contrast to computer vision tasks involving images that focus on understanding spatial information.However,current solutions fail to jointly and comprehensively analyse short-range motions between adjacent frames and long-range temporal aggregations at large scales in videos.In this paper,we propose a novel behaviour recognition method based on the integration of multigranular(IMG)motion features,which can provide support for deploying video analysis in multimedia IoT crowdsensing systems.In particular,we achieve reliable motion information modeling by integrating a channel attention-based short-term motion feature enhancement module(CSEM)and a cascaded long-term motion feature integration module(CLIM).We evaluate our model on several action recognition benchmarks,such as HMDB51,Something-Something and UCF101.The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods,which confirms its effective-ness and efficiency.展开更多
The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which ...The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which is essential in smart healthcare.However,Personal Health Records(PHRs)are normally kept in public cloud servers controlled by IoMT service providers,so privacy and security incidents may be frequent.Fortunately,Searchable Encryption(SE),which can be used to execute queries on encrypted data,can address the issue above.Nevertheless,most existing SE schemes cannot solve the vector dominance threshold problem.In response to this,we present a SE scheme called Vector Dominance with Threshold Searchable Encryption(VDTSE)in this study.We use a Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the number of two equal-length vectors’corresponding bits excluding wildcards is not less than a threshold t.Then,we solve the problem using the proposed technique modified in Hidden Vector Encryption(HVE).This technique makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE schemes.A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates the feasibility of the proposed VDTSE scheme.展开更多
The development of the Internet of Things(IoT)has brought great convenience to people.However,some information security problems such as privacy leakage are caused by communicating with risky users.It is a challenge t...The development of the Internet of Things(IoT)has brought great convenience to people.However,some information security problems such as privacy leakage are caused by communicating with risky users.It is a challenge to choose reliable users with which to interact in the IoT.Therefore,trust plays a crucial role in the IoT because trust may avoid some risks.Agents usually choose reliable users with high trust to maximize their own interests based on reinforcement learning.However,trust propagation is time-consuming,and trust changes with the interaction process in social networks.To track the dynamic changes in trust values,a dynamic trust inference algorithm named Dynamic Double DQN Trust(Dy-DDQNTrust)is proposed to predict the indirect trust values of two users without direct contact with each other.The proposed algorithm simulates the interactions among users by double DQN.Firstly,CurrentNet and TargetNet networks are used to select users for interaction.The users with high trust are chosen to interact in future iterations.Secondly,the trust value is updated dynamically until a reliable trust path is found according to the result of the interaction.Finally,the trust value between indirect users is inferred by aggregating the opinions from multiple users through a Modified Collaborative Filtering Averagebased Similarity(SMCFAvg)aggregation strategy.Experiments are carried out on the FilmTrust and the Epinions datasets.Compared with TidalTrust,MoleTrust,DDQNTrust,DyTrust and Dynamic Weighted Heuristic trust path Search algorithm(DWHS),our dynamic trust inference algorithm has higher prediction accuracy and better scalability.展开更多
Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and sm...Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and smart cards)may be vulnerable to a broad range of attacks(e.g.,eavesdropping and side-channel attacks).Hence,there have been attempts to design biometric-based authentication solutions,which rely on physiological and behavioral characteristics.Behavioral characteristics need continuous monitoring and specific environmental settings,which can be challenging to implement in practice.However,we can also leverage Artificial Intelligence(AI)in the extraction and classification of physiological characteristics from IoT devices processing to facilitate authentication.Thus,we review the literature on the use of AI in physiological characteristics recognition pub-lished after 2015.We use the three-layer architecture of the IoT(i.e.,sensing layer,feature layer,and algorithm layer)to guide the discussion of existing approaches and their limitations.We also identify a number of future research opportunities,which will hopefully guide the design of next generation solutions.展开更多
The rapid proliferation of Internet of Things(IoT)technology has facilitated automation across various sectors.Nevertheless,this advancement has also resulted in a notable surge in cyberattacks,notably botnets.As a re...The rapid proliferation of Internet of Things(IoT)technology has facilitated automation across various sectors.Nevertheless,this advancement has also resulted in a notable surge in cyberattacks,notably botnets.As a result,research on network analysis has become vital.Machine learning-based techniques for network analysis provide a more extensive and adaptable approach in comparison to traditional rule-based methods.In this paper,we propose a framework for analyzing communications between IoT devices using supervised learning and ensemble techniques and present experimental results that validate the efficacy of the proposed framework.The results indicate that using the proposed ensemble techniques improves accuracy by up to 1.7%compared to singlealgorithm approaches.These results also suggest that the proposed framework can flexibly adapt to general IoT network analysis scenarios.Unlike existing frameworks,which only exhibit high performance in specific situations,the proposed framework can serve as a fundamental approach for addressing a wide range of issues.展开更多
Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both cus...Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both customers,i.e.,people,and industries as wearable devices collect sensitive information about patients(both admitted and outdoor)in smart healthcare infrastructures.In addition to privacy,outliers or noise are among the crucial issues,which are directly correlated with IoT infrastructures,as most member devices are resource-limited and could generate or transmit false data that is required to be refined before processing,i.e.,transmitting.Therefore,the development of privacy-preserving information fusion techniques is highly encouraged,especially those designed for smart IoT-enabled domains.In this paper,we are going to present an effective hybrid approach that can refine raw data values captured by the respectivemember device before transmission while preserving its privacy through the utilization of the differential privacy technique in IoT infrastructures.Sliding window,i.e.,δi based dynamic programming methodology,is implemented at the device level to ensure precise and accurate detection of outliers or noisy data,and refine it prior to activation of the respective transmission activity.Additionally,an appropriate privacy budget has been selected,which is enough to ensure the privacy of every individualmodule,i.e.,a wearable device such as a smartwatch attached to the patient’s body.In contrast,the end module,i.e.,the server in this case,can extract important information with approximately the maximum level of accuracy.Moreover,refined data has been processed by adding an appropriate nose through the Laplace mechanism to make it useless or meaningless for the adversary modules in the IoT.The proposed hybrid approach is trusted from both the device’s privacy and the integrity of the transmitted information perspectives.Simulation and analytical results have proved that the proposed privacy-preserving information fusion technique for wearable devices is an ideal solution for resource-constrained infrastructures such as IoT and the Internet ofMedical Things,where both device privacy and information integrity are important.Finally,the proposed hybrid approach is proven against well-known intruder attacks,especially those related to the privacy of the respective device in IoT infrastructures.展开更多
Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of thi...Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of things (devices) that can be connected through the internet. The purpose: this paper aims to explore the concept of the Internet of Things (IoT) generally and outline the main definitions of IoT. The paper also aims to examine and discuss the obstacles and potential benefits of IoT in Saudi universities. Methodology: the researchers reviewed the previous literature and focused on several databases to use the recent studies and research related to the IoT. Then, the researchers also used quantitative methodology to examine the factors affecting the obstacles and potential benefits of IoT. The data were collected by using a questionnaire distributed online among academic staff and a total of 150 participants completed the survey. Finding: the result of this study reveals there are twelve factors that affect the potential benefits of using IoT such as reducing human errors, increasing business income and worker’s productivity. It also shows the eighteen factors which affect obstacles the IoT use, for example sensors’ cost, data privacy, and data security. These factors have the most influence on using IoT in Saudi universities.展开更多
With the continuous intensification of global aging,the issue of elderly care has become an increasingly prominent social problem.The Internet of Things(IoT)technology,as an emerging field,holds broad application pros...With the continuous intensification of global aging,the issue of elderly care has become an increasingly prominent social problem.The Internet of Things(IoT)technology,as an emerging field,holds broad application prospects.This article focuses on the application of IoT technology in group elderly care services and constructs a quality evaluation system for these services based on IoT technology.Through the analysis of practical application cases,the advantages and challenges of IoT technology in group elderly care services have been examined,confirming the feasibility and effectiveness of the evaluation system.展开更多
With the rapid development of the Internet of Things(IoT)technology,fiber-optic sensors,as a kind of high-precision and high-sensitivity measurement tool,are increasingly widely used in the field of IoT.This paper out...With the rapid development of the Internet of Things(IoT)technology,fiber-optic sensors,as a kind of high-precision and high-sensitivity measurement tool,are increasingly widely used in the field of IoT.This paper outlines the advantages of fiber-optic sensors over traditional sensors,such as high precision,strong resistance to electromagnetic interference,and long transmission distance.On this basis,the paper discusses the application scenarios of fiber-optic sensors in the Internet of Things,including environmental monitoring,intelligent industry,medical and health care,intelligent transportation,and other fields.It is hoped that this study can provide theoretical support and practical guidance for the further development of fiber-optic sensors in the field of the Internet of Things,as well as promote the innovation and application of IoT.展开更多
This paper proposes a street light warning system based on Internet of Things(IoT)technology,which uses cameras to detect moving targets such as vehicles and pedestrians around the system and adjust the brightness of ...This paper proposes a street light warning system based on Internet of Things(IoT)technology,which uses cameras to detect moving targets such as vehicles and pedestrians around the system and adjust the brightness of street lights according to road conditions to reduce unnecessary power waste.The system has a mature self-fault detection mechanism and is equipped with a wireless communication device for data exchange and timely communication with the host computer terminal.The intelligent street lamp system in this paper can be used to reduce the occurrence of pedestrian and vehicle accidents at intersections,and at the same time reduce the consumption of manpower and material resources for street lamp troubleshooting,to achieve energy conservation and emission reduction.展开更多
The emergence of new engineering disciplines has resulted in the growing trend of cross-discipline,and the enhancement of students’technical application ability has become the main teaching objective of engineering d...The emergence of new engineering disciplines has resulted in the growing trend of cross-discipline,and the enhancement of students’technical application ability has become the main teaching objective of engineering disciplines.For this reason,the Internet of Things(IoT)engineering program should be actively reformed,providing students with sufficient opportunities to improve their practical skills.This paper identifies the challenges within practical teaching of IoT engineering,delves into effective strategies for practical IoT teaching within the context of emerging engineering disciplines,and presents practical teaching experiences from the School of Information Engineering at Hainan University of Science and Technology as a case study.The aim is to offer guidance and insights to educators in this field.展开更多
The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has...The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.展开更多
Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(I...Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.展开更多
The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accide...The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks.展开更多
In the era of rapid development of Internet of Things(IoT),numerous machine-to-machine technologies have been applied to the industrial domain.Due to the divergence of IoT solutions,the industry is faced with a need t...In the era of rapid development of Internet of Things(IoT),numerous machine-to-machine technologies have been applied to the industrial domain.Due to the divergence of IoT solutions,the industry is faced with a need to apply various technologies for automation and control.This fact leads to a demand for an establishing interworking mechanism which would allow smooth interoperability between heterogeneous devices.One of the major protocols widely used today in industrial electronic devices is Modbus.However,data generated by Modbus devices cannot be understood by IoT applications using different protocols,so it should be applied in a couple with an IoT service layer platform.oneM2M,a global IoT standard,can play the role of interconnecting various protocols,as it provides flexible tools suitable for building an interworking framework for industrial services.Therefore,in this paper,we propose an interworking architecture between devices working on the Modbus protocol and an IoT platform implemented based on oneM2M standards.In the proposed architecture,we introduce the way to model Modbus data as oneM2M resources,rules to map them to each other,procedures required to establish interoperable communication,and optimization methods for this architecture.We analyze our solution and provide an evaluation by implementing it based on a solar power management use case.The results demonstrate that our model is feasible and can be applied to real case scenarios.展开更多
The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power g...The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power grid data. While wireless communication offers a convenient channel for grid terminal access and data transmission, it is important to note that the bandwidth of wireless communication is limited. Additionally, the broadcast nature of wireless transmission raises concerns about the potential for unauthorized eavesdropping during data transmission. To address these challenges and achieve reliable, secure, and real-time transmission of power grid data, an intelligent security transmission strategy with sensor-transmission-computing linkage is proposed in this paper. The primary objective of this strategy is to maximize the confidentiality capacity of the system. To tackle this, an optimization problem is formulated, taking into consideration interruption probability and interception probability as constraints. To efficiently solve this optimization problem, a low-complexity algorithm rooted in deep reinforcement learning is designed, which aims to derive a suboptimal solution for the problem at hand. Ultimately, through simulation results, the validity of the proposed strategy in guaranteed communication security, stability, and timeliness is substantiated. The results confirm that the proposed intelligent security transmission strategy significantly contributes to the safeguarding of communication integrity, system stability, and timely data delivery.展开更多
文摘This article proposes a comprehensive monitoring system for tunnel operation to address the risks associated with tunnel operations.These risks include safety control risks,increased traffic flow,extreme weather events,and movement of tectonic plates.The proposed system is based on the Internet of Things and artificial intelligence identification technology.The monitoring system will cover various aspects of tunnel operations,such as the slope of the entrance,the structural safety of the cave body,toxic and harmful gases that may appear during operation,excessively high and low-temperature humidity,poor illumination,water leakage or road water accumulation caused by extreme weather,combustion and smoke caused by fires,and more.The system will enable comprehensive monitoring and early warning of fire protection systems,accident vehicles,and overheating vehicles.This will effectively improve safety during tunnel operation.
文摘Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible to cybersecurity threats due to its reliance on low-power biomedical devices and the use of open wireless channels for communication.In this article,we intend to address this shortcoming,and as a result,we propose a new scheme called,the certificateless anonymous authentication(CAA)scheme.The proposed scheme is based on hyperelliptic curve cryptography(HECC),an enhanced variant of elliptic curve cryptography(ECC)that employs a smaller key size of 80 bits as compared to 160 bits.The proposed scheme is secure against various attacks in both formal and informal security analyses.The formal study makes use of the Real-or-Random(ROR)model.A thorough comparative study of the proposed scheme is conducted for the security and efficiency of the proposed scheme with the relevant existing schemes.The results demonstrate that the proposed scheme not only ensures high security for health-related data but also increases efficiency.The proposed scheme’s computation cost is 2.88 ms,and the communication cost is 1440 bits,which shows its better efficiency compared to its counterpart schemes.
文摘The Internet of Things(IoT)is a smart networking infrastructure of physical devices,i.e.,things,that are embedded with sensors,actuators,software,and other technologies,to connect and share data with the respective server module.Although IoTs are cornerstones in different application domains,the device’s authenticity,i.e.,of server(s)and ordinary devices,is the most crucial issue and must be resolved on a priority basis.Therefore,various field-proven methodologies were presented to streamline the verification process of the communicating devices;however,location-aware authentication has not been reported as per our knowledge,which is a crucial metric,especially in scenarios where devices are mobile.This paper presents a lightweight and location-aware device-to-server authentication technique where the device’s membership with the nearest server is subjected to its location information along with other measures.Initially,Media Access Control(MAC)address and Advance Encryption Scheme(AES)along with a secret shared key,i.e.,λ_(i) of 128 bits,have been utilized by Trusted Authority(TA)to generate MaskIDs,which are used instead of the original ID,for every device,i.e.,server and member,and are shared in the offline phase.Secondly,TA shares a list of authentic devices,i.e.,server S_(j) and members C_(i),with every device in the IoT for the onward verification process,which is required to be executed before the initialization of the actual communication process.Additionally,every device should be located such that it lies within the coverage area of a server,and this location information is used in the authentication process.A thorough analytical analysis was carried out to check the susceptibility of the proposed and existing authentication approaches against well-known intruder attacks,i.e.,man-in-the-middle,masquerading,device,and server impersonations,etc.,especially in the IoT domain.Moreover,proposed authentication and existing state-of-the-art approaches have been simulated in the real environment of IoT to verify their performance,particularly in terms of various evaluation metrics,i.e.,processing,communication,and storage overheads.These results have verified the superiority of the proposed scheme against existing state-of-the-art approaches,preferably in terms of communication,storage,and processing costs.
文摘Nowadays, devices are connected across all areas, from intelligent buildings and smart cities to Industry 4.0 andsmart healthcare. With the exponential growth of Internet of Things usage in our world, IoT security is still thebiggest challenge for its deployment. The main goal of IoT security is to ensure the accessibility of services providedby an IoT environment, protect privacy, and confidentiality, and guarantee the safety of IoT users, infrastructures,data, and devices. Authentication, as the first line of defense against security threats, becomes the priority ofeveryone. It can either grant or deny users access to resources according to their legitimacy. As a result, studyingand researching authentication issues within IoT is extremely important. As a result, studying and researchingauthentication issues within IoT is extremely important. This article presents a comparative study of recent researchin IoT security;it provides an analysis of recent authentication protocols from2019 to 2023 that cover several areaswithin IoT (such as smart cities, healthcare, and industry). This survey sought to provide an IoT security researchsummary, the biggest susceptibilities, and attacks, the appropriate technologies, and the most used simulators. Itillustrates that the resistance of protocols against attacks, and their computational and communication cost arelinked directly to the cryptography technique used to build it. Furthermore, it discusses the gaps in recent schemesand provides some future research directions.
基金supported by National Natural Science Foundation of China under grant No.62271125,No.62273071Sichuan Science and Technology Program(No.2022YFG0038,No.2021YFG0018)+1 种基金by Xinjiang Science and Technology Program(No.2022273061)by the Fundamental Research Funds for the Central Universities(No.ZYGX2020ZB034,No.ZYGX2021J019).
文摘With the adoption of cutting-edge communication technologies such as 5G/6G systems and the extensive development of devices,crowdsensing systems in the Internet of Things(IoT)are now conducting complicated video analysis tasks such as behaviour recognition.These applications have dramatically increased the diversity of IoT systems.Specifically,behaviour recognition in videos usually requires a combinatorial analysis of the spatial information about objects and information about their dynamic actions in the temporal dimension.Behaviour recognition may even rely more on the modeling of temporal information containing short-range and long-range motions,in contrast to computer vision tasks involving images that focus on understanding spatial information.However,current solutions fail to jointly and comprehensively analyse short-range motions between adjacent frames and long-range temporal aggregations at large scales in videos.In this paper,we propose a novel behaviour recognition method based on the integration of multigranular(IMG)motion features,which can provide support for deploying video analysis in multimedia IoT crowdsensing systems.In particular,we achieve reliable motion information modeling by integrating a channel attention-based short-term motion feature enhancement module(CSEM)and a cascaded long-term motion feature integration module(CLIM).We evaluate our model on several action recognition benchmarks,such as HMDB51,Something-Something and UCF101.The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods,which confirms its effective-ness and efficiency.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61872289 and 62172266in part by the Henan Key Laboratory of Network Cryptography Technology LNCT2020-A07the Guangxi Key Laboratory of Trusted Software under Grant No.KX202308.
文摘The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which is essential in smart healthcare.However,Personal Health Records(PHRs)are normally kept in public cloud servers controlled by IoMT service providers,so privacy and security incidents may be frequent.Fortunately,Searchable Encryption(SE),which can be used to execute queries on encrypted data,can address the issue above.Nevertheless,most existing SE schemes cannot solve the vector dominance threshold problem.In response to this,we present a SE scheme called Vector Dominance with Threshold Searchable Encryption(VDTSE)in this study.We use a Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the number of two equal-length vectors’corresponding bits excluding wildcards is not less than a threshold t.Then,we solve the problem using the proposed technique modified in Hidden Vector Encryption(HVE).This technique makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE schemes.A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates the feasibility of the proposed VDTSE scheme.
基金supported by the National Natural Science Foundation of China(62072392)the National Natural Science Foundation of China(61972360)the Major Scientific and Technological Innovation Projects of Shandong Province(2019522Y020131).
文摘The development of the Internet of Things(IoT)has brought great convenience to people.However,some information security problems such as privacy leakage are caused by communicating with risky users.It is a challenge to choose reliable users with which to interact in the IoT.Therefore,trust plays a crucial role in the IoT because trust may avoid some risks.Agents usually choose reliable users with high trust to maximize their own interests based on reinforcement learning.However,trust propagation is time-consuming,and trust changes with the interaction process in social networks.To track the dynamic changes in trust values,a dynamic trust inference algorithm named Dynamic Double DQN Trust(Dy-DDQNTrust)is proposed to predict the indirect trust values of two users without direct contact with each other.The proposed algorithm simulates the interactions among users by double DQN.Firstly,CurrentNet and TargetNet networks are used to select users for interaction.The users with high trust are chosen to interact in future iterations.Secondly,the trust value is updated dynamically until a reliable trust path is found according to the result of the interaction.Finally,the trust value between indirect users is inferred by aggregating the opinions from multiple users through a Modified Collaborative Filtering Averagebased Similarity(SMCFAvg)aggregation strategy.Experiments are carried out on the FilmTrust and the Epinions datasets.Compared with TidalTrust,MoleTrust,DDQNTrust,DyTrust and Dynamic Weighted Heuristic trust path Search algorithm(DWHS),our dynamic trust inference algorithm has higher prediction accuracy and better scalability.
基金funded in part by the National Natural Science Foundation of China under Grant No.61872038in part by the Fundamental Research Funds for the Central Universities under Grant No.FRF-GF-20-15B.
文摘Effective user authentication is key to ensuring equipment security,data privacy,and personalized services in Internet of Things(IoT)systems.However,conventional mode-based authentication methods(e.g.,passwords and smart cards)may be vulnerable to a broad range of attacks(e.g.,eavesdropping and side-channel attacks).Hence,there have been attempts to design biometric-based authentication solutions,which rely on physiological and behavioral characteristics.Behavioral characteristics need continuous monitoring and specific environmental settings,which can be challenging to implement in practice.However,we can also leverage Artificial Intelligence(AI)in the extraction and classification of physiological characteristics from IoT devices processing to facilitate authentication.Thus,we review the literature on the use of AI in physiological characteristics recognition pub-lished after 2015.We use the three-layer architecture of the IoT(i.e.,sensing layer,feature layer,and algorithm layer)to guide the discussion of existing approaches and their limitations.We also identify a number of future research opportunities,which will hopefully guide the design of next generation solutions.
基金supported by Innovative Human Resource Development for Local Intellectualization program through the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(IITP2024-00156287,50%)funded by the Institute for Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2022-0-01203,Regional Strategic Industry Convergence Security Core Talent Training Business,50%).
文摘The rapid proliferation of Internet of Things(IoT)technology has facilitated automation across various sectors.Nevertheless,this advancement has also resulted in a notable surge in cyberattacks,notably botnets.As a result,research on network analysis has become vital.Machine learning-based techniques for network analysis provide a more extensive and adaptable approach in comparison to traditional rule-based methods.In this paper,we propose a framework for analyzing communications between IoT devices using supervised learning and ensemble techniques and present experimental results that validate the efficacy of the proposed framework.The results indicate that using the proposed ensemble techniques improves accuracy by up to 1.7%compared to singlealgorithm approaches.These results also suggest that the proposed framework can flexibly adapt to general IoT network analysis scenarios.Unlike existing frameworks,which only exhibit high performance in specific situations,the proposed framework can serve as a fundamental approach for addressing a wide range of issues.
基金Ministry of Higher Education of Malaysia under theResearch GrantLRGS/1/2019/UKM-UKM/5/2 and Princess Nourah bint Abdulrahman University for financing this researcher through Supporting Project Number(PNURSP2024R235),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Due to the overwhelming characteristics of the Internet of Things(IoT)and its adoption in approximately every aspect of our lives,the concept of individual devices’privacy has gained prominent attention from both customers,i.e.,people,and industries as wearable devices collect sensitive information about patients(both admitted and outdoor)in smart healthcare infrastructures.In addition to privacy,outliers or noise are among the crucial issues,which are directly correlated with IoT infrastructures,as most member devices are resource-limited and could generate or transmit false data that is required to be refined before processing,i.e.,transmitting.Therefore,the development of privacy-preserving information fusion techniques is highly encouraged,especially those designed for smart IoT-enabled domains.In this paper,we are going to present an effective hybrid approach that can refine raw data values captured by the respectivemember device before transmission while preserving its privacy through the utilization of the differential privacy technique in IoT infrastructures.Sliding window,i.e.,δi based dynamic programming methodology,is implemented at the device level to ensure precise and accurate detection of outliers or noisy data,and refine it prior to activation of the respective transmission activity.Additionally,an appropriate privacy budget has been selected,which is enough to ensure the privacy of every individualmodule,i.e.,a wearable device such as a smartwatch attached to the patient’s body.In contrast,the end module,i.e.,the server in this case,can extract important information with approximately the maximum level of accuracy.Moreover,refined data has been processed by adding an appropriate nose through the Laplace mechanism to make it useless or meaningless for the adversary modules in the IoT.The proposed hybrid approach is trusted from both the device’s privacy and the integrity of the transmitted information perspectives.Simulation and analytical results have proved that the proposed privacy-preserving information fusion technique for wearable devices is an ideal solution for resource-constrained infrastructures such as IoT and the Internet ofMedical Things,where both device privacy and information integrity are important.Finally,the proposed hybrid approach is proven against well-known intruder attacks,especially those related to the privacy of the respective device in IoT infrastructures.
文摘Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of things (devices) that can be connected through the internet. The purpose: this paper aims to explore the concept of the Internet of Things (IoT) generally and outline the main definitions of IoT. The paper also aims to examine and discuss the obstacles and potential benefits of IoT in Saudi universities. Methodology: the researchers reviewed the previous literature and focused on several databases to use the recent studies and research related to the IoT. Then, the researchers also used quantitative methodology to examine the factors affecting the obstacles and potential benefits of IoT. The data were collected by using a questionnaire distributed online among academic staff and a total of 150 participants completed the survey. Finding: the result of this study reveals there are twelve factors that affect the potential benefits of using IoT such as reducing human errors, increasing business income and worker’s productivity. It also shows the eighteen factors which affect obstacles the IoT use, for example sensors’ cost, data privacy, and data security. These factors have the most influence on using IoT in Saudi universities.
基金Phased Achievement of the National College Student Innovation and Entrepreneurship Training Project“Time Bay-A Group Elderly Care Service Platform Based on Internet of Things Technology”(S202013836008X)2021 Chongqing Education Commission Science and Technology Research Program Youth Project(KJQN202105501).
文摘With the continuous intensification of global aging,the issue of elderly care has become an increasingly prominent social problem.The Internet of Things(IoT)technology,as an emerging field,holds broad application prospects.This article focuses on the application of IoT technology in group elderly care services and constructs a quality evaluation system for these services based on IoT technology.Through the analysis of practical application cases,the advantages and challenges of IoT technology in group elderly care services have been examined,confirming the feasibility and effectiveness of the evaluation system.
文摘With the rapid development of the Internet of Things(IoT)technology,fiber-optic sensors,as a kind of high-precision and high-sensitivity measurement tool,are increasingly widely used in the field of IoT.This paper outlines the advantages of fiber-optic sensors over traditional sensors,such as high precision,strong resistance to electromagnetic interference,and long transmission distance.On this basis,the paper discusses the application scenarios of fiber-optic sensors in the Internet of Things,including environmental monitoring,intelligent industry,medical and health care,intelligent transportation,and other fields.It is hoped that this study can provide theoretical support and practical guidance for the further development of fiber-optic sensors in the field of the Internet of Things,as well as promote the innovation and application of IoT.
文摘This paper proposes a street light warning system based on Internet of Things(IoT)technology,which uses cameras to detect moving targets such as vehicles and pedestrians around the system and adjust the brightness of street lights according to road conditions to reduce unnecessary power waste.The system has a mature self-fault detection mechanism and is equipped with a wireless communication device for data exchange and timely communication with the host computer terminal.The intelligent street lamp system in this paper can be used to reduce the occurrence of pedestrian and vehicle accidents at intersections,and at the same time reduce the consumption of manpower and material resources for street lamp troubleshooting,to achieve energy conservation and emission reduction.
文摘The emergence of new engineering disciplines has resulted in the growing trend of cross-discipline,and the enhancement of students’technical application ability has become the main teaching objective of engineering disciplines.For this reason,the Internet of Things(IoT)engineering program should be actively reformed,providing students with sufficient opportunities to improve their practical skills.This paper identifies the challenges within practical teaching of IoT engineering,delves into effective strategies for practical IoT teaching within the context of emerging engineering disciplines,and presents practical teaching experiences from the School of Information Engineering at Hainan University of Science and Technology as a case study.The aim is to offer guidance and insights to educators in this field.
基金the National Natural Science Foundation of China(No.61662004).
文摘The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.
文摘Escalating cyber security threats and the increased use of Internet of Things(IoT)devices require utilisation of the latest technologies available to supply adequate protection.The aim of Intrusion Detection Systems(IDS)is to prevent malicious attacks that corrupt operations and interrupt data flow,which might have significant impact on critical industries and infrastructure.This research examines existing IDS,based on Artificial Intelligence(AI)for IoT devices,methods,and techniques.The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy,precision,recall and F1-score;this research also considers training time.Results demonstrate that Graph Neural Networks(GNN)have several benefits over other traditional AI frameworks through their ability to achieve in excess of 99%accuracy in a relatively short training time,while also capable of learning from network traffic the inherent characteristics of different cyber-attacks.These findings identify the GNN(a Deep Learning AI method)as the most efficient IDS system.The novelty of this research lies also in the linking between high yielding AI-based IDS algorithms and the AI-based learning approach for data privacy protection.This research recommends Federated Learning(FL)as the AI training model,which increases data privacy protection and reduces network data flow,resulting in a more secure and efficient IDS solution.
基金This paper is financed by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,Project No.BG-RRP-2.004-0001-C01.
文摘The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks.
基金the support of the Korea Research Foundation with the funding of the Ministry of Science and Information and Communication Technology(No.2018-0-88457,development of translucent solar cells and Internet of Things technology for Solar Signage).
文摘In the era of rapid development of Internet of Things(IoT),numerous machine-to-machine technologies have been applied to the industrial domain.Due to the divergence of IoT solutions,the industry is faced with a need to apply various technologies for automation and control.This fact leads to a demand for an establishing interworking mechanism which would allow smooth interoperability between heterogeneous devices.One of the major protocols widely used today in industrial electronic devices is Modbus.However,data generated by Modbus devices cannot be understood by IoT applications using different protocols,so it should be applied in a couple with an IoT service layer platform.oneM2M,a global IoT standard,can play the role of interconnecting various protocols,as it provides flexible tools suitable for building an interworking framework for industrial services.Therefore,in this paper,we propose an interworking architecture between devices working on the Modbus protocol and an IoT platform implemented based on oneM2M standards.In the proposed architecture,we introduce the way to model Modbus data as oneM2M resources,rules to map them to each other,procedures required to establish interoperable communication,and optimization methods for this architecture.We analyze our solution and provide an evaluation by implementing it based on a solar power management use case.The results demonstrate that our model is feasible and can be applied to real case scenarios.
文摘The automatic collection of power grid situation information, along with real-time multimedia interaction between the front and back ends during the accident handling process, has generated a massive amount of power grid data. While wireless communication offers a convenient channel for grid terminal access and data transmission, it is important to note that the bandwidth of wireless communication is limited. Additionally, the broadcast nature of wireless transmission raises concerns about the potential for unauthorized eavesdropping during data transmission. To address these challenges and achieve reliable, secure, and real-time transmission of power grid data, an intelligent security transmission strategy with sensor-transmission-computing linkage is proposed in this paper. The primary objective of this strategy is to maximize the confidentiality capacity of the system. To tackle this, an optimization problem is formulated, taking into consideration interruption probability and interception probability as constraints. To efficiently solve this optimization problem, a low-complexity algorithm rooted in deep reinforcement learning is designed, which aims to derive a suboptimal solution for the problem at hand. Ultimately, through simulation results, the validity of the proposed strategy in guaranteed communication security, stability, and timeliness is substantiated. The results confirm that the proposed intelligent security transmission strategy significantly contributes to the safeguarding of communication integrity, system stability, and timely data delivery.