Enviromics refers to the characterization of micro-and macroenvironments based on large-scale environmental datasets.By providing genotypic recommendations with predictive extrapolation at a site-specific level,enviro...Enviromics refers to the characterization of micro-and macroenvironments based on large-scale environmental datasets.By providing genotypic recommendations with predictive extrapolation at a site-specific level,enviromics could inform plant breeding decisions across varying conditions and anticipate productivity in a changing climate.Enviromics-based integration of statistics,envirotyping(i.e.,determining environmental factors),and remote sensing could help unravel the complex interplay of genetics,environment,and management.To support this goal,exhaustive envirotyping to generate precise environmental profiles would significantly improve predictions of genotype performance and genetic gain in crops.Already,informatics management platforms aggregate diverse environmental datasets obtained using optical,thermal,radar,and light detection and ranging(LiDAR)sensors that capture detailed information about vegetation,surface structure,and terrain.This wealth of information,coupled with freely available climate data,fuels innovative enviromics research.While enviromics holds immense potential for breeding,a few obstacles remain,such as the need for(1)integrative methodologies to systematically collect field data to scale and expand observations across the landscape with satellite data;(2)state-of-the-art AI models for data integration,simulation,and prediction;(3)cyberinfrastructure for processing big data across scales and providing seamless interfaces to deliver forecasts to stakeholders;and(4)collaboration and data sharing among farmers,breeders,physiologists,geoinformatics experts,and programmers across research institutions.Overcoming these challenges is essential for leveraging the full potential of big data captured by satellites to transform 21st century agriculture and crop improvement through enviromics.展开更多
基金R.T.R.,L.L.P.,and G.E.M.thank the Brazilian agencies Coordenac¸ao de Aperfeic¸oamento de Pessoal de Nıvel Superior(CAPES)and Conselho Nacional de Desenvolvimento Cientıfico e Tecnologico(CNPq)for the financial support,which was instrumental in the successful execution of this project.L.H.was supported through an ARC Future Fellowship(FT220100350)from the Australian Research Council.C.H.A.was supported by The University of Colorado Boulder Grand ChallengeCIRES Earth Lab.Y.X.was supported by the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciences,Shenzhen Science and Technology Program(KQTD202303010928390070)Hebei Science and Technology Program(215A7612D),and the Provincial Technology Innovation Program of Shandong,China.
文摘Enviromics refers to the characterization of micro-and macroenvironments based on large-scale environmental datasets.By providing genotypic recommendations with predictive extrapolation at a site-specific level,enviromics could inform plant breeding decisions across varying conditions and anticipate productivity in a changing climate.Enviromics-based integration of statistics,envirotyping(i.e.,determining environmental factors),and remote sensing could help unravel the complex interplay of genetics,environment,and management.To support this goal,exhaustive envirotyping to generate precise environmental profiles would significantly improve predictions of genotype performance and genetic gain in crops.Already,informatics management platforms aggregate diverse environmental datasets obtained using optical,thermal,radar,and light detection and ranging(LiDAR)sensors that capture detailed information about vegetation,surface structure,and terrain.This wealth of information,coupled with freely available climate data,fuels innovative enviromics research.While enviromics holds immense potential for breeding,a few obstacles remain,such as the need for(1)integrative methodologies to systematically collect field data to scale and expand observations across the landscape with satellite data;(2)state-of-the-art AI models for data integration,simulation,and prediction;(3)cyberinfrastructure for processing big data across scales and providing seamless interfaces to deliver forecasts to stakeholders;and(4)collaboration and data sharing among farmers,breeders,physiologists,geoinformatics experts,and programmers across research institutions.Overcoming these challenges is essential for leveraging the full potential of big data captured by satellites to transform 21st century agriculture and crop improvement through enviromics.