期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Earthquake-related Tectonic Deformation of Soft-sediments and Its Constraints on Basin Tectonic Evolution 被引量:13
1
作者 LU Hongbo ZHANG Yuxu +1 位作者 ZHANG Qiling XIAO Jiafei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第5期724-732,共9页
The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolu... The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolution. One representative of the syn-sedimentary extension structure is syn-sedimentary boudinage structure, while the typical example of the syn-sedimentary compression structure is compression sand pillows or compression wrinkles. The former shows NW-SE-trendlng contemporaneous extension events related to earthquakes in the rift basin near a famous Fe-Nb-REE deposit in northern China during the Early Paleozoic (or Mesoproterozoic as proposed by some researches), while the latter indicates NE-SW-trending contemporaneous compression activities related to earthquakes in the Middle Triassic in the Nanpanjiang remnant basin covering south Guizhou, northwestern Guangxi and eastern Yunnan in southwestern China. The syn-sedimentary boudinage structure was found in an earthquake slump block in the lower part of the Early Paleozoic Sailinhudong Group, 20 km to the southeast of Bayan Obo, Inner Mongolia, north of China. The slump block is composed of two kinds of very thin layers-pale-gray micrite (microcrystalline limestone) of 1-2 cm thick interbedded with gray muddy micrite layers with the similar thickness. Almost every thin muddy micrite layer was cut into imbricate blocks or boudins by abundant tiny contemporaneous faults, while the interbedded micrite remain in continuity. Boudins form as a response to layer-parallel extension (and/or layer-perpendicular flattening) of stiff layers enveloped top and bottom by mechanically soft layers. In this case, the imbricate blocks cut by the tiny contemporaneous faults are the result of abrupt horizontal extension of the crust in the SE-NW direction accompanied with earthquakes. Thus, the rock block is, in fact, a kind of seismites. The syn-sedimentary boudins indicate that there was at least a strong earthquake belt on the southeast side of the basin during the early stage of the Sailinhudong Group. This may be a good constraint on the tectonic evolution of the Bayan Obo area during the Early Paleozoic time. The syn-sedimentary compression structure was found in the Middle Triassic flysch in the Nanpanjiang Basin. The typical structures are compression sand pillows and compression wrinkles. Both of them were found on the bottoms of sand units and the top surface of the underlying mud units. In other words, the structures were found only in the interfaces between the graded sand layer and the underlying mud layer of the flysch. A deformation experiment with dough was conducted, showing that the tectonic deformation must have been instantaneous one accompanied by earthquakes. The compression sand pillows or wrinkles showed uniform directions along the bottoms of the sand layer in the flysch, revealing contemporaneous horizontal compression during the time between deposition and diagenesis of the related beds. The Nanpanjiang Basin was affected, in general, with SSW-NNE compression during the Middle Triassic, according to the syn-sedimentary compression structure. The two kinds of syn-sedimentary tectonic deformation also indicate that the related basins belong to a rift basin and a remnant basin, respectively, in the model of Wilson Cycle. 展开更多
关键词 earthquake tectonic deformation of soft-sediments syn-sedimentary extension structure syn-compression structure tectonic evolution of basins
下载PDF
Late Quaternary Tectonic Deformation of the Eastern End of the Altyn Tagh Fault 被引量:4
2
作者 YU Zhongyuan MIN Wei +2 位作者 CHEN Tao LIU Yugang SU Peng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第6期1813-1834,共22页
The Quaternary activity of the faults at the eastern end of the Altyn Tagh fault, including the Dengdengshan-Chijiaciwo, Kuantanshan and Heishan faults, was studied on the basis of interpretation of satellite images, ... The Quaternary activity of the faults at the eastern end of the Altyn Tagh fault, including the Dengdengshan-Chijiaciwo, Kuantanshan and Heishan faults, was studied on the basis of interpretation of satellite images, trenching, geomorphologic offset measurements and dating. The Altyn Tagh fault has extended eastwards to Kuantanshan Mountain. The left-slip rates of the Altyn Tagh fault decreased through the Qilianshan fault and were transformed into thrust and folds deformation of many NW-trending faults within the Jiuxi basin. Meanwhile, under NE-directed compression of the Tibetan plateau, thrust dominated the Dengdengshan-Chijiaciwo fault northeast of the Kuantanshan uplift with a rate lower than that of every fault in the Jiuxi basin south of the uplift, implying that tectonic deformation is mainly confined to the plateau interior and the Hexi Corridor area. From continual northeastward enlargement of the Altyn Tagh fault, the Kuantanshan uplift became a triangular wedge intruding to the east, while the Kuantanshan area at the end of this wedge rose up strongly. In future, the Altyn Tagh fault will continue to spread eastward along the Heishan and Jintananshan faults. The results have implications for understanding the propagation of crustal deformation and the mechanism of the India-Eurasian collision. 展开更多
关键词 slips rate tectonic deformation Kuantanshan fault Dengdengshan fault Altyn Tagh fault
下载PDF
Analysis of generation factors for tectonic deformation in the Xigeda formation in southwestern China 被引量:1
3
作者 Li Ping Liu Xingsong +1 位作者 Yang Mei'e Yuan Jingli 《Engineering Sciences》 2012年第1期8-13,共6页
The Xigeda formation is a set of interbreds comprised of halfconsolidated silt,fine sand and clay with clear lamination and total thickness of 300 m.It is dated to be the early Pleistocene and widespread distributed o... The Xigeda formation is a set of interbreds comprised of halfconsolidated silt,fine sand and clay with clear lamination and total thickness of 300 m.It is dated to be the early Pleistocene and widespread distributed on the Quaternary planes of denudation and leveling.This formation has particular tectonic deformation as expressed by deformed belts confined to certain locations,which extend linearly over long distances.It also manifests itself as graben and horst sequences where fault planes are very straight.Various deformation styles,such as horizontal,vertical and oblique dislocations,normal,reverse and thrust faulting resulted in tilts of small blocks in different directions.The clay beds are intruded by underlying sand layers.Parallel ridges and depressions characterize the landscape.These phenomena of deformation are probably the result of intensive vibration of soil bodies during major earthquakes which caused instantaneous shear,compression and extension.The analysis of generation factors for such tectonic deformation provides a new approach for determination of areas with seismic risks,assessment of earthquake intensity and research of earthquake mechanisms. 展开更多
关键词 EARTHQUAKE tectonic deformation Xigeda formation
下载PDF
Quantitative analysis on tectonic deformation of active rupture zones
4
作者 江在森 牛安福 +4 位作者 王敏 黎凯武 方颖 张希 张晓亮 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2005年第6期656-665,共10页
Based on the regional GPS data of high spatial resolution, we present a method of quantitative analysis on the tectonic deformation of active rupture zones in order to predict the location of forthcoming major earthqu... Based on the regional GPS data of high spatial resolution, we present a method of quantitative analysis on the tectonic deformation of active rupture zones in order to predict the location of forthcoming major earthquakes. Firstly we divide the main fault area into certain deformation units, then derive the geometric deformation and relative dislocation parameters of each unit and finally estimate quantitatively the slip and strain rates in each segment of the rupture zone. Furthermore, by comparing the consistency of deformation in all segments of the whole rupture zone, we can determine the possible anomalous segments as well as their properties and amplitudes. In analyzing the eastern boundaries of Sichuan-Yunnan block with the GPS velocity data for the period of 1991-2001, we have discovered that the Mianning-Ningnan-Dongchuan segment on the Zemuhe-Xiaojiang fault zone is relatively locked and the left-lateral shear strain rate here is higher. 展开更多
关键词 active rupture zone tectonic deformation GPS prediction of strong earthquake location
下载PDF
Numerical analysis of contemporary hori-zontal tectonic deformation fields in China from GPS data
5
作者 杨少敏 王琪 游新兆 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2005年第2期135-146,254,共13页
Assuming that the contemporary tectonic activity in China can be treated as continuous, we have simulated 1245 present-day multiple-epoch GPS velocity solutions in the range of Chinese mainland, Mongolia, Myanma, Indi... Assuming that the contemporary tectonic activity in China can be treated as continuous, we have simulated 1245 present-day multiple-epoch GPS velocity solutions in the range of Chinese mainland, Mongolia, Myanma, India, Nepal and Himalayas with a bi-cubic spline interpolation function to inverse the integral horizontal velocity with the fitting accuracy less than 3 mm and obtained the strain rate fields in Chinese mainland. We have also analyzed the characteristics of spatial distribution of horizontal deformation and strain rate fields in Chinese mainland. The result shows that the analysis on the continuous deformation in the large-scale and dense GPS velocity fields can reveal not only the integral tectonic characters of Chinese mainland but also the tectonic characters in local regions. Generally, the magnitude and intensity of horizontal tectonic deformation have a mutation in the South-North Seismic Belt (95°E-102°E), which is stronger in the west than the east and stronger in the south than the north. Large strain rates are found in the areas as Kunlun block, Xianshuihe fault zone and central Yunnan, and the variation of velocity is very rapid. At the same time, the tectonic activity is relatively calm on Altyn Tagh fault zone, and extensive strain is found in the eastern part of central Tianshan. 展开更多
关键词 GPS tectonic deformation horizontal strain rate fields
下载PDF
Characteristics of Tectonic Deformation and Mechanisms for the Active Maxianshan-Xinglongshan Fault System in the Lanzhou Area
6
作者 Yuan Daoyang, Liu Xiaofeng, Zheng Wenjun, Liu Xiaolong and Liu BaichiLanzhou Institute of Seismology, China Seismological Bureau, Lanzou 730000, China 《Earthquake Research in China》 2003年第4期315-323,共9页
A detailed investigation permitted us to obtain quantitative data concerning fine geometric structures of 4 faults of the active Maxianshan-Xinglongshan fault system and the latest movement along them. Of them the nor... A detailed investigation permitted us to obtain quantitative data concerning fine geometric structures of 4 faults of the active Maxianshan-Xinglongshan fault system and the latest movement along them. Of them the northern Maxianshan border fault is a large-scale, strongly active Holocene reverse sinistral strike-slip fault, the other 3 faults, the southern Maxianshan border fault and the southern Xinglongshan border and the northern Xinglongshan border faults are the accompanying active late-Pleistocene thrust faults, which are incorporated into the main strike-slip fault, the northern Maxianshan border fault at depth. It is the most important earthquake-controlling fault in the Lanzhou area, the fault influences and constrains the seismic activity in the area. 展开更多
关键词 LANZHOU Maxianshan-Xinglongshan mountains Active fault system tectonic deformation
下载PDF
Multi-layer Tectonic Model for Intraplate Deformation and Plastic-Flow Network in the Asian Continental Lithosphere 被引量:4
7
作者 Wang Shengzu Institute of Geology, State Seismological Bureau, Beijing Liu Linqun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1993年第3期247-271,共25页
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c... In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation. 展开更多
关键词 Continental lithosphere tectonic deformation multi-layer tectonic model large-scale seismic belt seismic network plastic flow network
下载PDF
Response of Macromolecular Structure to Deformation in Tectonically Deformed Coal 被引量:8
8
作者 LI Xiaoshi JU Yiwen +1 位作者 HOU Quanlin FAN Junjia 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第1期82-90,共9页
The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 3... The structural evolution of tectonically deformed coals (TDC) with different deformational mechanisms and different deformational intensities are investigated in depth through X-ray diffraction (XRD) analysis on 31 samples of different metamorphic grades (R : 0.7%-3.1%) collected from the Huaibei coalfield. The results indicated that there are different evolution characteristics between the ductile and brittle deformational coals with increasing of metamorphism and deformation. On the one hand, with the increase of metamorphism, the atomic plane spacing (d002) is decreasing at step velocity, the stacking of the BSU layer (Lc) is increasing at first and then decreasing, but the extension of the BSU layer (La) and the ratio of La/Lc are decreasing initially and then increasing. On the other hand, for the brittle deformational coal, d002 is increasing initially and then decreasing, which causes an inversion of the variation of Lc and La under the lower-middle or higher-middle metamorphism grade when the deformational intensity was increasing. In contrast, in the ductile deformational coals, d002 decreased initially and then increased, and the value of L~ decreased with the increase of deformational intensity. But the value of La increased under the lower-middle metamorphism grade and increased at first and then decreased under the higher-middle metamorphism grade. We conclude that the degradation and polycondensation of TDC macromolecular structure can be obviously impacted during the ductile deformational process, because the increase and accumulation of unit dislocation perhaps transforms the stress into strain energy. Meanwhile, the brittle deformation can transform the stress into frictional heat energy, and promote the metamorphism and degradation as well. It can be concluded that deformation is more important than metamorphism to the differential evolution of the ductile and brittle deformational coals. 展开更多
关键词 tectonically deformed coal X-ray diffraction deformational mechanism deformationalintensity macromolecular structure
下载PDF
Polyphase Deformation of the Weihai-Rongcheng UHP Unit Rocks,NE Sulu:Insights into the Tectonic Evolution of the Dabie-Sulu UHP and HP Belts,China 被引量:4
9
作者 SUO Shutian ZHONG Zengqiu +1 位作者 ZHOU Hanwen YOU Zhendong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第1期42-54,共13页
Different scales of structural data reveal a complex deformation history of ultrahigh- pressure (UHP) rocks exposed in the Weihai-Rongcbeng area, NE Sulu (northern Jiangsu-eastern Shandong), eastern China. Excludi... Different scales of structural data reveal a complex deformation history of ultrahigh- pressure (UHP) rocks exposed in the Weihai-Rongcbeng area, NE Sulu (northern Jiangsu-eastern Shandong), eastern China. Excluding pre-UHP deformations, at least five major sequential deformational stages (D1-Ds) are recognized. The first deformation (DO produced a weak foliation and lineation in massive eclogites. The foliated eclogite with a dominant foliation containing a stretching and mineral lineation was developed during the I)2 deformation. Both the D1 and D2 deformations occurred under UHP metamorphic conditions, and are well preserved in the eclogite bodies. D3 structures which developed shortly after the formation of granulite/amphibolite facies symplectites are characterized by imbricated associations marked by a regional, steeply dipping foliation, compositional layering, eclogite boudinage, isoclinal folds and reverse ductile shear zones. The D3 deformation was accompanied by decompressional partial melting. A regional, gently dipping amphibolite facies foliation and stretching lineation, low-angle detachments, and dome- and arc-shaped structures formed during the D4 deformation stage dominate to some degree the map pattern of the Weihai-Rongcbeng UHP domain. The last stage of deformation (Ds) gave rise to the final exhumation of the UHP rocks. Ds is characterized by development of brittle-dominated high-angle faulting associated with emplacement of large volmnes of undeformed granite plutons and dykes dated at 134-100 Ma. The deformational and metamorphic sequence followed by the UHP rocks in the Weihai-Rongcheng area is similar to that studied in the entire Dabie-Sulu UHP and HP metamorphic belts from microscopic to mapping scale. Based on structural data, combined with available petrographic, metamorphic and geochronological data, a speculative tectonic evolutionary model for the Dabie-Sulu UHP and IIP belts is proposed, involving continental subduction/collision between the Sino-Korean and Yangtze cratons and subsequent polyphase exhumation histories of the UHP and IIP metamorphic rocks. 展开更多
关键词 Weihai-Rongcheng area ultrahigh-pressure (UHP) metamorphism tectonic evolution polyphase deformation deformation partitioning
下载PDF
Heterogeneous strain regime in the eastern margin of Tibetan Plateau and its tectonic implications 被引量:5
10
作者 Guojie Meng Xiaoning Su +5 位作者 Weiwei Wu Jinwei Ren Yonglin Yang Jicang Wu Chieh-Hung Chen Nikolay V.Shestakov 《Earthquake Science》 CSCD 2015年第1期1-10,共10页
The eastern margin of Tibetan Plateau is one of the most active zones of tectonic deformation and seismicity in China. To monitor strain buildup and benefit seismic risk assessment, we constructed 14 survey-mode globa... The eastern margin of Tibetan Plateau is one of the most active zones of tectonic deformation and seismicity in China. To monitor strain buildup and benefit seismic risk assessment, we constructed 14 survey-mode global position system (GPS) stations throughout the northwest of Longmenshan fault. A new GPS field over 1999-2011 is derived from measurements of the newly built and pre-existing stations in this region. Sequentially, two strain rate fields, one preceding and the other following the 2008 MwT.9 Wenchuan earthquake, are obtained using the Gausian weighting approach. Strain field over 1999-2007 shows distinct strain partitioning prior to the 2008 MwT.9 Wenchuan earthquake, with compression spreading over around Longmenshan area. Strain fieldderived from the two measurements in 2009 and 2011 shows that the area around Longmenshan continues to be under striking compression, as the pattern preceding the Wenchuan earthquake, implying a causative factor of the sequent of 2013 Mw6.7 Lushan earthquake. Our GPSderived dilatation shows that both the Wenchuan and Lushan earthquakes occurred within the domain of pro- nounced contraction. The GPS velocities demonstrate that the Longriba fault underwent slight motion with the faultnormal and -parallel rates at 1.0 -4- 2.5 mm and 0.3 4-2.2 mm/a; the Longmenshan fault displayed slow activity, with a fault-normal rate at 0.8 ± 2.5 mm/a, and a fault-parallel rate at 1.8 4- 1.7 mm/a. Longriba fault is on a par with Longmenshan fault in strain partitioning to accommodate the southeastward motion of eastern margin of the Tibetan Plateau. Integrated analysis of principal strain tensors, mean principal stress, and fast directions of mantle anisotropy shows that west of Sichuan is characterized as mechanically strong crust-mantle coupling. 展开更多
关键词 GPS measurement Longmenshan faultzone Longriba fault zone tectonic deformation TIBETANPLATEAU
下载PDF
Characteristics of Mesozoic-Cenozoic tectonic diagenesis in the Kuqa area of the Tarim Basin,China 被引量:4
11
作者 Jianfeng Shou Yang Shen +1 位作者 Huiliang Zhang Ronghu Zhang 《Petroleum Science》 SCIE CAS CSCD 2009年第4期366-375,共10页
Tectonic diagenesis is a common and important geological phenomenon. We can fully understand the diagenesis of compressional basins through studying tectonic diagenesis. In this paper, we presented the tectonic diagen... Tectonic diagenesis is a common and important geological phenomenon. We can fully understand the diagenesis of compressional basins through studying tectonic diagenesis. In this paper, we presented the tectonic diagenetic characteristics in the Kuqa area of the Tarim Basin by integrated method of geological analysis and paleotectonic stress. The results showed that the Mesozoic-Cenozoic tectonic diagenesis affected sandstone compaction evolution mainly through physical mechanisms. It showed characteristics of abrupt change and nonthermal indicator (it means that sandstone compaction can not be explained by thermal diagenetic compaction alone because actual sandstone compaction was larger than thermal compaction), which were different from the thermal and fluid diagenesis. Compared with thermal diagenesis, tectonic diagenesis had a typical tectonic compaction in very short time, and many phases of tectonic deformation showed multiple abrupt changes of compaction. There are obvious differences between tectonic and thermal diagenetic compaction, leading to sandstone compaction being larger than the thermal compaction under the same thermal evolution stage in the areas where tectonic deformation happened. The stronger the tectonic deformation, the more obvious the difference. Tectonic process changed the stress distribution through changing the tectonic deformation styles, resulting in different tectonic diagenesis effects. Therefore, tectonic diagenesis of Mesozoic-Cenozoic in the Kuqa area can be divided into four types including rigid rock restraint, fault ramp, low angle fault slippage, and napping. 展开更多
关键词 Sandstone reservoirs tectonic deformation tectonic diagenesis controlling factors Kuqa area
下载PDF
An Inverse Analysis of the Comprehensive Medium Parameters and a Simulation of the Crustal Deformation of the Qinghai-Tibet Plateau 被引量:3
12
作者 杨志强 陈建兵 +1 位作者 巨天乙 李天文 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第6期1250-1257,共8页
Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal ... Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal medium parameters of the plateau are inversely analyzed and the characteristics of the related movement macroscopically simulated. It is then concluded that the tectonic deformation of the plateau is mainly in the form of a N-S compression accompanied by an E-W stretching, and the present tectonic setting of the plateau should be the result of the collision between the Indian and the Eurasian continents during the Cenozoic. 展开更多
关键词 Qinghai-Tibet Plateau medium parameter inverse analysis on displacement SIMULATION tectonic deformation
下载PDF
Numerical modeling of coupled fluid flow,heat transport and mechanical deformation:An example from the Chanziping ore district,South China 被引量:1
13
作者 Minghui Ju Jianwen Yang 《Geoscience Frontiers》 SCIE CAS 2011年第4期577-582,共6页
This paper presents numerical investigation on the ore-forming fluid migration driven by tectonic deformation and thermally-induced buoyancy force in the Chanziping ore district in South China.A series of numerical sc... This paper presents numerical investigation on the ore-forming fluid migration driven by tectonic deformation and thermally-induced buoyancy force in the Chanziping ore district in South China.A series of numerical scenarios are considered to examine the effect of meteoric water precipitation, the dip angle of the faults,unconformity surface,and thermal input on the ore genesis.Our computations reveal that the downward basinal fluid flow driven by extensional stress mixes with the upward basal fluid driven by the thermal input from depth at the junction of two faults at a temperature of about 200℃,triggering the precipitation of the Chanziping uranium deposit. 展开更多
关键词 Chanziping uranium deposit Numerical modeling tectonic deformation Fluid flow Thermal convection
下载PDF
Crust Shortening of the Daliangshan Tectonic Zone in the Cenozoic Era and Its Implications
14
作者 Chen Changyun He Honglin 《Earthquake Research in China》 2009年第1期68-77,共10页
The Daliangshan tectonic zone is a rhombic area to the east of the Anninghe and Zemuhe fault zones in the middle segment of the Xianshuihe-Xiaojiang fault system along the southeast margin of the Qinghai-Xizang (Tibe... The Daliangshan tectonic zone is a rhombic area to the east of the Anninghe and Zemuhe fault zones in the middle segment of the Xianshuihe-Xiaojiang fault system along the southeast margin of the Qinghai-Xizang (Tibet) Plateau. Since the Cenozoic era, the neotectonic deformation in the Daliangshan tectonic zone has presented not only sinistral slip and reverse faulting along the Daliangshan fault zone, but also proximate SN-trending crust shortening. It is estimated that the average crust shortening in the Daliangshan tectonic zone is 10.9 ± 1.6 km, with a shortening rate of 17.8 ± 2.2% using the method of balanced cross-sections. The crust shortening from folding occurred mainly in the Miocene and the Pliocene periods, lasting no more than 8.6 Ma. Based on this, a crust shortening velocity of 1.3 ± 0.2 mm/a can be estimated. Compared with the left offset along the Daliangshan fault zone, it is recognized that crust shortening by folding plays an important part in transferring crustal deformation southeastward along the Xianshulhe-Xiaojiang fault system. 展开更多
关键词 Daliangshan tectonic zone Crust shortening tectonic deformation Qinghai-Xizang (Tibet) Plateau
下载PDF
Micro-structural evolution and their effects on physical properties in different types of tectonically deformed coals 被引量:45
15
作者 Yiwen Ju Kray Luxbacher +4 位作者 Xiaoshi Li Guochang Wang Zhifeng Yan Mingming Wei Liye Yu 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期364-375,共12页
The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact p... The macromolecular structure of tectonically deformed coals(TDC)may be determined by the deformation mechanisms of coal.Alterations of the macromolecular structure change the pore structure of TDC and thereby impact physical properties such as porosity and permeability.This study focuses on structure and properties of TDC from the Huaibei and Huainan coal mining areas of southern North China.Relationships between the macromolecular structure and the pore structure of TDC were analyzed using techniques such as X-ray diffraction,high-resolution transmission electron microcopy,and the low-temperature nitrogen adsorption.The results indicated that the directional stress condition can cause the arrangement of basic structural units(BSU)more serious and closer.And,the orientation is stronger in ductile deformed coal than in brittle deformed coal.Tectonic deformation directly influences the macromolecular structure of coal and consequently results in dynamic metamorphism.Because the size of BSU in brittle deformed coal increases more slowly than in ductile deformed coal,frictional heating and stress-chemistry of shearing areas might play a more important role,locally altering coal structure under stress,in brittle deformed coal.Strain energy is more significant in increasing the ductile deformation of coal.Furthermore,mesopores account for larger percentage of the nano-scale pore volume in brittle deformed coals,while mesopores volume in ductile deformed coal diminishes rapidly along with an increase in the proportion of micropores and sub-micropores.This research also approved that the deformations of macromolecular structures change nano-scale pore structures,which are very important for gas adsorption and pervasion space for gas.Therefore,the exploration and development potential of coal bed methane is promising for reservoirs that are subjected to a certain degree of brittle deformation(such as schistose structure coal,mortar structure coal and cataclastic structure coal).It also holds promise for TDC resulting from wrinkle structure coal of low ductile deformation and later superimposed by brittle deformation.Other kinds of TDC suffering from strong brittle-ductile and ductile deformation,such as scale structure coal and mylonitic structure coal,are difficult problems to resolve. 展开更多
关键词 tectonically deformed coals Formation mechanisms Macromolecular structure Pore structure Micro-structured evolution Coal bed methane
下载PDF
Effects of Tectonic Force on Hydrostatic Pressure in Crust 被引量:4
16
作者 LuGuxian WeiChangshan GuoTao 《Journal of China University of Geosciences》 SCIE CSCD 2004年第2期155-161,共7页
The research into the hydrostatic pressure in the crust has been previously conducted from the viewpoint that the hydrostatic pressure is equal to the gravity, based on the fact that the hydrostatic pressure is derive... The research into the hydrostatic pressure in the crust has been previously conducted from the viewpoint that the hydrostatic pressure is equal to the gravity, based on the fact that the hydrostatic pressure is derived mainly from the gravity of its overlying rocks. In this paper, the stress state of any point in the crust is suggested to have been caused by both the gravity and the tectonic force. The author proposes that the hydrostatic pressure is a combination or superposition of two isotropic stresses in the tectonic force and gravity stress fields. The results obtained with a finite element simulation indicate that the additional hydrostatic pressure borne by rocks decreases gradually from the compression zone ( p s c), the shear zone ( p s sh ) to the tensile zone ( p s t), and that the difference in the additional tectonic hydrostatic pressure between these deformed zones tends to increase, following the increase in the absolute value and/or the difference in external forces between different directions. This paper presents the foundation for the research into the tectonic physicochemistry. 展开更多
关键词 tectonic deformed zone additional tectonic hydrostatic pressure tectonic physicochemistry
下载PDF
Influence of combination forms of intact sub-layer and tectonically deformed sub-layer of coal on the gas drainage performance of boreholes: a numerical study 被引量:3
17
作者 Wei Zhao Kai Wang +3 位作者 Rong Zhang Huzi Dong Zhen Lou Fenghua An 《International Journal of Coal Science & Technology》 EI 2020年第3期571-580,共10页
High concentration and large flow flux of gas drainage from underground coal seams is the precondition of reducing emission and large-scale use of gas.However,the layered occurrence of coal seams with tectonically def... High concentration and large flow flux of gas drainage from underground coal seams is the precondition of reducing emission and large-scale use of gas.However,the layered occurrence of coal seams with tectonically deformed sub-layers and intact sub-layers makes it difficult to effectively drain gas through commonly designed boreholes.In this study,the gas drainage performance in coal seams with different combinations of tectonically deformed sub-layers and intact sub-layers was numerically analyzed.The analysis results show that the gas drainage curve changes from a single-stage line to a dual-stage curve as the permeability ratios of Zone II(kII)and Zone I(kI)increase,raising the difficulty in gas drainage.Furthermore,a dual-system pressure decay model based on the first-order kinetic model was developed to describe the dual-stage characteristics of pressure decay curves with different permeability ratios.In the end,the simulation results were verified with reference to in-situ drainage data from literature.The research results are helpful for mines,especially those with layered coal seams comprising tectonically deformed sub-layers and intact sub-layers,to choose appropriate gas drainage methods and develop the original drainage designs for achieving better gas drainage performance. 展开更多
关键词 tectonically deformed coal Pressure decay Permeability Hydraulic flushing boreholes
下载PDF
Geochemistry of Mercury in the Permian Tectonically Deformed Coals from Peigou Mine, Xinmi Coalfield, China
18
作者 SONG Dangyu LI Chunhui +2 位作者 SONG Boyi YANG Cunbei LI Yunbo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第6期2243-2254,共12页
As the mercury emitted from coal combustion can lead to serious environmental issues, researchers pay more attention to the content, distribution and occurrence of mercury in coal. In this paper, the content, distribu... As the mercury emitted from coal combustion can lead to serious environmental issues, researchers pay more attention to the content, distribution and occurrence of mercury in coal. In this paper, the content, distribution, and occurrence of mercury in the Permian tectonically deformed coals from Peigou Mine, Xinmi coalfield, Henan Province were investigated. A total of 18 bench samples were taken from No.2-1 coals seam in Peigou Mine, including 15 coal bench samples, two roofs and one floor. The mercury concentration, mineral composition, and main inorganic element content of 18 samples were determined by DMA-80 direct mercury analyzer, XRD, and XRF respectively. The results show that the mercury content ranges from 0.047 ppm to 0.643 ppm, with an average of 0.244 ppm. Though the coal seam has turned into typical tectonically deformed coal by the strong tectonic destruction and plastic deformation, the vertical distribution of mercury has remarkable heterogeneity in coal seam section. By the analysis of correlation between mercury and the main inorganic elements and the mineral composition in coal, we infer that majority of mercury mainly relates to pyrite or kaolinite. 展开更多
关键词 mercury in coal minerals in coal tectonically deformed coal modes of occurrence
下载PDF
FLUID-ROCK INTERACTION AND MASS BALANCE IN DEFORMED ROCKS OF THE IRTISH TECTONIC ZONE,NORTHERN XINJIANG,CHINA
19
《Geotectonica et Metallogenia》 1994年第Z2期31-33,共3页
关键词 ROCK FLUID-ROCK INTERACTION AND MASS BALANCE IN DEFORMED ROCKS OF THE IRTISH tectonic ZONE NORTHERN XINJIANG CHINA SiO MNO
下载PDF
Geological modeling of coalbed methane reservoirs in the tectonically deformed coal seam group in the Dahebian block,western Guizhou,China
20
作者 Yong SHU Shuxun SANG Xiaozhi ZHOU 《Frontiers of Earth Science》 SCIE CSCD 2024年第1期44-67,共24页
The widely spread Carboniferous-Permian coal seam group in southern China has great potential for coalbed methane resources,but the extensively developed tectonically deformed coal seriously restricts its development.... The widely spread Carboniferous-Permian coal seam group in southern China has great potential for coalbed methane resources,but the extensively developed tectonically deformed coal seriously restricts its development.Taking the Dahebian block in western Guizhou as the study area,the geological model of coalbed methane reservoirs in the tectonically deformed coal seam group was established,and the spatial distribution pattern of model parameters was clarified by clustering algorithms and factor analysis.The facies model suggests that the main coal body structures in Nos.1,4,and 7 coal seams are cataclastic coal and granulated coal,whereas the No.11 coal seam is dominated by granulated coal,which has larger thicknesses and spreads more continuously.The in situ permeability of primary undeformed coal,cataclastic coal,granulated coal,and mylonitized coal reservoirs are 0.333 mD,0.931 mD,0.146 mD,and 0.099 mD,respectively,according to the production performance analysis method.The property model constructed by facies-controlled modeling reveals that Nos.1,4,and 7 coal seams have a wider high-permeability area,but the gas content is lower;the high-permeability area in the No.11 coal seam is more limited,but the gas content is higher.The results of the self-organizing map neural network and K-means clustering indicate that the geological model can be divided into 6 clusters,the model parameter characteristics of the 6 clusters are summarized by data analysis in combination with 6 factors extracted by factor analysis,and the application of data analysis results in multi-layer coalbed methane co-development is presented.This study provides ideas for the geological modeling in the tectonically deformed coal seam group and its data analysis. 展开更多
关键词 geological modeling tectonically deformed coal coal seam group clustering algorithm Dahebian block western Guizhou
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部