Objective:To investigate the clinical effect of the guided bone regeneration(GBR)technique combined with temporary bridgework-guided gingival contouring in treating upper anterior tooth loss with labial bone defects.M...Objective:To investigate the clinical effect of the guided bone regeneration(GBR)technique combined with temporary bridgework-guided gingival contouring in treating upper anterior tooth loss with labial bone defects.Methods:From July 2023 to April 2024,80 patients with upper anterior tooth loss and labial bone defects were admitted to the hospital and selected as evaluation samples.They were divided into an observation group(n=40)and a control group(n=40)using a numerical table lottery scheme.The control group received treatment with the GBR technique,while the observation group received treatment with the GBR technique combined with temporary bridges to guide gingival contouring.The two groups were compared in terms of clinical red aesthetic scores(PES),labial alveolar bone density,labial bone wall thickness,gingival papillae,gingival margin levels,and patient satisfaction.Results:The PES scores of patients in the observation group were higher than those in the control group after surgery(P<0.05).The bone density of the labial alveolar bone and the thickness of the labial bone wall in the observation group were higher than those in the control group.The levels of gingival papillae and gingival margins were lower in the observation group after surgery(P<0.05).Additionally,patient satisfaction in the observation group was higher than in the control group(P<0.05).Conclusion:The GBR technique combined with temporary bridge-guided gingival contouring for treating upper anterior tooth loss with labial bone defects can improve the aesthetic effect of gingival soft tissue,increase alveolar bone density and the thickness of the labial bone wall,and enhance patient satisfaction.This approach is suitable for widespread application in healthcare institutions.展开更多
In dentistry, panoramic X-ray images are extensively used by dentists for tooth structure analysis and disease diagnosis. However, the manual analysis of these images is time-consuming and prone to misdiagnosis or ove...In dentistry, panoramic X-ray images are extensively used by dentists for tooth structure analysis and disease diagnosis. However, the manual analysis of these images is time-consuming and prone to misdiagnosis or overlooked. While deep learning techniques have been employed to segment teeth in panoramic X-ray images, accurate segmentation of individual teeth remains an underexplored area. In this study, we propose an end-to-end deep learning method that effectively addresses this challenge by employing an improved combinatorial loss function to separate the boundaries of adjacent teeth, enabling precise segmentation of individual teeth in panoramic X-ray images. We validate the feasibility of our approach using a challenging dataset. By training our segmentation network on 115 panoramic X-ray images, we achieve an intersection over union (IoU) of 86.56% for tooth segmentation and an accuracy of 65.52% in tooth counting on 87 test set images. Experimental results demonstrate the significant improvement of our proposed method in single tooth segmentation compared to existing methods.展开更多
文摘Objective:To investigate the clinical effect of the guided bone regeneration(GBR)technique combined with temporary bridgework-guided gingival contouring in treating upper anterior tooth loss with labial bone defects.Methods:From July 2023 to April 2024,80 patients with upper anterior tooth loss and labial bone defects were admitted to the hospital and selected as evaluation samples.They were divided into an observation group(n=40)and a control group(n=40)using a numerical table lottery scheme.The control group received treatment with the GBR technique,while the observation group received treatment with the GBR technique combined with temporary bridges to guide gingival contouring.The two groups were compared in terms of clinical red aesthetic scores(PES),labial alveolar bone density,labial bone wall thickness,gingival papillae,gingival margin levels,and patient satisfaction.Results:The PES scores of patients in the observation group were higher than those in the control group after surgery(P<0.05).The bone density of the labial alveolar bone and the thickness of the labial bone wall in the observation group were higher than those in the control group.The levels of gingival papillae and gingival margins were lower in the observation group after surgery(P<0.05).Additionally,patient satisfaction in the observation group was higher than in the control group(P<0.05).Conclusion:The GBR technique combined with temporary bridge-guided gingival contouring for treating upper anterior tooth loss with labial bone defects can improve the aesthetic effect of gingival soft tissue,increase alveolar bone density and the thickness of the labial bone wall,and enhance patient satisfaction.This approach is suitable for widespread application in healthcare institutions.
文摘In dentistry, panoramic X-ray images are extensively used by dentists for tooth structure analysis and disease diagnosis. However, the manual analysis of these images is time-consuming and prone to misdiagnosis or overlooked. While deep learning techniques have been employed to segment teeth in panoramic X-ray images, accurate segmentation of individual teeth remains an underexplored area. In this study, we propose an end-to-end deep learning method that effectively addresses this challenge by employing an improved combinatorial loss function to separate the boundaries of adjacent teeth, enabling precise segmentation of individual teeth in panoramic X-ray images. We validate the feasibility of our approach using a challenging dataset. By training our segmentation network on 115 panoramic X-ray images, we achieve an intersection over union (IoU) of 86.56% for tooth segmentation and an accuracy of 65.52% in tooth counting on 87 test set images. Experimental results demonstrate the significant improvement of our proposed method in single tooth segmentation compared to existing methods.