期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces 被引量:9
1
作者 崔贵珍 《Science China Mathematics》 SCIE 2000年第3期267-279,共13页
A quasisymmetric homeomorphism of the unit circle S1 is called integrably asymptotic affine if it admits a quasiconformal extension into the unit disk so that its complex dilatation is square integrable in the Poincar... A quasisymmetric homeomorphism of the unit circle S1 is called integrably asymptotic affine if it admits a quasiconformal extension into the unit disk so that its complex dilatation is square integrable in the Poincaré metric on the unit disk. Let QS* (s1) be the space of such maps. Here we give some characterizations and properties of maps in QS* (S1). We also show that QS* (S1)/M?b (S1) is the completion of Diff(S1)/M?b(S1) in the Weil-Petersson metric. 展开更多
关键词 Teichmüller space Weil-Petersson metric
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部