A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled ...A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled quantum teleportation network involving more users is in demand,which satisfies different combinations of users for practical requirements.Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users.We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger(GHZ)state to realize such a task by choosing the different measurement and feedback operations.The controlled teleportation network,which includes one sub-network,two sub-networks and three sub-networks,can be realized for different application of user combinations.Furthermore,the coherent feedback control(CFC)can manipulate and improve the teleportation performance.Our approach is flexible and scalable,and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.展开更多
We give a sufficient condition for detecting the entanglement resource for perfect multiqubit teleportation. The criterion involves only local measurements on some complementary observables and can be experimentally i...We give a sufficient condition for detecting the entanglement resource for perfect multiqubit teleportation. The criterion involves only local measurements on some complementary observables and can be experimentally implemented. It is also a necessary condition for full separability of multiqubit states. Moreover, by proving the optimality of teleportation witnesses, we solve the open problem in Phys. Rev. A 86, 032315(2012).展开更多
Recently Wei-Bo Gao et al.[Phys.Rev.Lett.104 (2010) 020501]; reported on the creation of a 4-photon6-qubit cluster state.It is shown this states can be utilized for perfect teleportation of arbitrary three qubit syste...Recently Wei-Bo Gao et al.[Phys.Rev.Lett.104 (2010) 020501]; reported on the creation of a 4-photon6-qubit cluster state.It is shown this states can be utilized for perfect teleportation of arbitrary three qubit systemsand controlled teleportation of an arbitrary two-qubit state.Therefore, the six-qubit cluster state as quantum channelsis equivalent to that of maximally six-qubit entangled state.展开更多
A conclusive teleportation protocol of a d-dimensional two-particle unknown quantum state using three d- dimensional particles in an arbitrary pure state is proposed. A sender teleports the unknown state conclusively ...A conclusive teleportation protocol of a d-dimensional two-particle unknown quantum state using three d- dimensional particles in an arbitrary pure state is proposed. A sender teleports the unknown state conclusively to a receiver by using the positive operator valued measure(POVM) and introducing an ancillary qudit to perform the generalized Bell basis measurement, We calculate the optimal teleportation fidelity. We also discuss and analyse the reason why the information on the teleported state is lost in the course of the protocol,展开更多
We present a (t, .n) threshold multiparty controlled quantum teleportation protocol of an arbitrary m-qubit quantum state between two remote parties. The unknown m-qubit quantum state can be recovered by the receive...We present a (t, .n) threshold multiparty controlled quantum teleportation protocol of an arbitrary m-qubit quantum state between two remote parties. The unknown m-qubit quantum state can be recovered by the receiver under control of a subset of the n controllers if the number of the subset is larger than or equal to a threshold, say, t, but not for any t - 1 or fewer controllers. Our scheme seems to be more practical and more flexible than other existing protocols. The quantum resource required is just m Einstein-Podolsky-Rosen (EPR) pairs plus some single photons. The techniques required are only Bell state measurement, single-qubit unitary operation and yon Neumann measurement. So our scheme is also feasible with present-day technique.展开更多
This paper provides a scheme for generating maximally entangled qubit states in the anti-Jaynes-Cummings interaction mechanism, so called entangled anti-polariton qubit states. We demonstrate that in an initial vacuum...This paper provides a scheme for generating maximally entangled qubit states in the anti-Jaynes-Cummings interaction mechanism, so called entangled anti-polariton qubit states. We demonstrate that in an initial vacuum-field, Rabi oscillations in a cavity mode in the anti-Jaynes-Cummings interaction process, occur in the reverse sense relative to the Jaynes-Cummings interaction process and that time evolution of entanglement in the anti-Jaynes-Cummings interaction process takes the same form as in the Jaynes-Cummings interaction process. With the generated anti-polariton qubit state as one of the initial qubits, we present quantum teleportation of an atomic quantum state by applying entanglement swapping protocol achieving an impressive maximal teleportation fidelity <img src="Edit_d5204c26-d504-4580-bc0d-7379086587a2.bmp" alt="" />.展开更多
We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful ...We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful probability and fidelity of the four schemes reach 1. In the first two schemes, the receiver can only apply one of the unitary transformations to reconstruct the original state, making it easier for these two schemes to be directly realized. In the third and fourth schemes, the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes, which makes real experiments more suitable. It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification. Finally, we present a new scheme for three-party sharing an arbitrary unknown multi-particle state. In this scheme, the sender first shares three three-particle GHZ states with two agents. After setting up the secure quantum channel, an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements, and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements. The successful probability and fidelity of this scheme also reach 1. It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents.展开更多
In this paper, two schemes for teleporting an unknown two-particle entangled state from the sender (Alice) to the receiver (Bob) via a four-particle entangled cluster state are proposed. In these two schemes, the ...In this paper, two schemes for teleporting an unknown two-particle entangled state from the sender (Alice) to the receiver (Bob) via a four-particle entangled cluster state are proposed. In these two schemes, the unknown twoparticle entangled state can be teleported perfectly. The successful probabilities and fidelities of the schemes can reach unity.展开更多
Two kinds of -particle d-dimensional Schmidt-form entangled state teleportation protocols are presented. In the first protocol, the teleportation is achieved by -dimensional Bell-basis measurements, while in the secon...Two kinds of -particle d-dimensional Schmidt-form entangled state teleportation protocols are presented. In the first protocol, the teleportation is achieved by -dimensional Bell-basis measurements, while in the second protocol it is realized by -dimensional GHZ-basis measurement.展开更多
A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two ...A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.展开更多
The teleportation of an arbitrary n-particle state is proposed if n pairs of identical EPR states are utilized as quantum channels. Independent Bell state measurements are performed for joint measurement. By using a ...The teleportation of an arbitrary n-particle state is proposed if n pairs of identical EPR states are utilized as quantum channels. Independent Bell state measurements are performed for joint measurement. By using a special Latin square of order , explicit expressions of outcomes after the Bell state measurements by Alice (sender) and the corresponding unitary transformations by Bob (receiver) can be derived. It is shown that the teleportation of n-particle state can be implemented by a series of single-qubit teleportation.展开更多
We present a method to teleport multi-qubit quantum information in an easy way from a sender to a receiver via the control of many agents in a network. Only when all the agents collaborate with the quantum information...We present a method to teleport multi-qubit quantum information in an easy way from a sender to a receiver via the control of many agents in a network. Only when all the agents collaborate with the quantum information receiver can the unknown states in the sender's qubits be fully reconstructed in the receiver's qubits. In our method, agents's control parameters are obtained via quantum entanglement swapping. As the realization of the many-agent controlled teleportation is concerned, compared to the recent method [G.P. Yang, et al., Phys. Rev. A 70 (2004) 022329], our present method considerably reduces the preparation difficulty of initial states and the identification difficulty of entangled states, moreover, it does not need local Hadamard operations and it is more feasible in technology.展开更多
The quantum secure direct communication (QSDC) protocol with a random basis and order is analysed and an effective attack, i.e. teleportation attack, is presented. An eavesdropper can obtain half of the transmitted ...The quantum secure direct communication (QSDC) protocol with a random basis and order is analysed and an effective attack, i.e. teleportation attack, is presented. An eavesdropper can obtain half of the transmitted secret bits with the help of this special attack. It is shown that quantum teleportation can be employed to weaken the role of the order-rearrangement encryption at least in a certain circumstance. Meanwhile, a possible improvement on this protocol is proposed, which makes it secure against this kind of attack.展开更多
The teleportation of an arbitrary n-particle state is proposed when n pairs of entangled particles are utilized as quantum channels. It can be successfully realized with a certain probability which is determined by th...The teleportation of an arbitrary n-particle state is proposed when n pairs of entangled particles are utilized as quantum channels. It can be successfully realized with a certain probability which is determined by the smallest coefficients of n entangled pairs. Using a Latin square of order 2n, explicit expressions of two unitary operations corresponding to different Bell-basis measurements performed by Alice can be obtained at the end of Bob.展开更多
In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second sche...In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.展开更多
A scheme for probabilistic teleporting an unknown two-particle state of general formation by partly pure entangled four-particle state is proposed. It is shown that after performing two Bell state measurements, proper...A scheme for probabilistic teleporting an unknown two-particle state of general formation by partly pure entangled four-particle state is proposed. It is shown that after performing two Bell state measurements, proper unitary transformation and the measurement on an auxiliary qubit, the unknown two-particle state of general formation, which was destroyed at one place, can be reconstructed at another place with certain probability.展开更多
A scheme of teleportation of an arbitrary three-particle state is presented when three pairs of entangled particles are used as quantum channels. After the Bell state measurements are operated by the sender, the origi...A scheme of teleportation of an arbitrary three-particle state is presented when three pairs of entangled particles are used as quantum channels. After the Bell state measurements are operated by the sender, the original state with deterministic probability can be reconstructed by the receiver when a corresponding unitary transformation is followed.展开更多
We present a theoretical scheme for perfect teleportation of an unknown multipartite two-level state by a single EPR (Einstein-Podolsky-Rosen) pair, and then generalize it to multilevel, i.e., an N-quNit state can b...We present a theoretical scheme for perfect teleportation of an unknown multipartite two-level state by a single EPR (Einstein-Podolsky-Rosen) pair, and then generalize it to multilevel, i.e., an N-quNit state can be teleported by a single quNit entangled pair, with additional local unitary operations. The feature of the scheme is that teleporting a multipartite state with a reduced amount of entanglement costs less classical bits.展开更多
An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity i...An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.展开更多
Natural thermal entanglement between two qubits with XXX Heisenberg interaction is studied. For the antiferromagnet, increasing coupling strength or decreasing temperature under critical point increases the entangleme...Natural thermal entanglement between two qubits with XXX Heisenberg interaction is studied. For the antiferromagnet, increasing coupling strength or decreasing temperature under critical point increases the entanglement. Based on the thermal entanglement as quantum channel, entanglement and information of an input entangled state are transferred via partial teleportation. We find that the entanglement transferred will be lost du~ing the process, and for the entanglement fidelity the partial teleportation is superior to classical communication as concurrence of entangled channel beyond 1/4. We show that both correlation information in input entangled state and individual information of the teleported particle are linearly dissipated. With more entanglement in quantum channel, more entanglement and correlation information can be transferred.展开更多
基金Project supported by the Natural Science Foundation of Shanxi Province of China (Grant No. 202203021221214)the National Natural Science Foundation of China (Grant Nos. 62122044, 62135008, 61925503, 11904218, 12004276, 12147215, and 11834010)+4 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China (Grant Nos. 2019L0092 and 2020L0029)the Key Project of the National Key Research and Development Program of China (Grant No. 2022YFA1404500)the Program for the Innovative Talents of Higher Education Institutions of Shanxi Province of Chinathe Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxithe Fund for Shanxi “1331 Project” Key Subjects Construction
文摘A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled quantum teleportation network involving more users is in demand,which satisfies different combinations of users for practical requirements.Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users.We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger(GHZ)state to realize such a task by choosing the different measurement and feedback operations.The controlled teleportation network,which includes one sub-network,two sub-networks and three sub-networks,can be realized for different application of user combinations.Furthermore,the coherent feedback control(CFC)can manipulate and improve the teleportation performance.Our approach is flexible and scalable,and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.
基金supported by the National Natural Science Foundation of China(Grant Nos.11401032,11275131,and 61473325)the Foundation of Beijing Information Science and Technology University,China(Grant No.1425032)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China
文摘We give a sufficient condition for detecting the entanglement resource for perfect multiqubit teleportation. The criterion involves only local measurements on some complementary observables and can be experimentally implemented. It is also a necessary condition for full separability of multiqubit states. Moreover, by proving the optimality of teleportation witnesses, we solve the open problem in Phys. Rev. A 86, 032315(2012).
基金Supported by the National Natural Science Foundation of China under Grant No.10902083 Shaanxi Natural Science Foundation under Grant No.2009JM1007
文摘Recently Wei-Bo Gao et al.[Phys.Rev.Lett.104 (2010) 020501]; reported on the creation of a 4-photon6-qubit cluster state.It is shown this states can be utilized for perfect teleportation of arbitrary three qubit systemsand controlled teleportation of an arbitrary two-qubit state.Therefore, the six-qubit cluster state as quantum channelsis equivalent to that of maximally six-qubit entangled state.
基金Project supported by the National Natural Science Foundation of China (Grant No 60373059), the Major Research Plan of the National Natural Science Foundation of China (Grant No 90604023) and the Doctoral Foundation of the State Education Ministry of China(Grant No 20040013007).
文摘A conclusive teleportation protocol of a d-dimensional two-particle unknown quantum state using three d- dimensional particles in an arbitrary pure state is proposed. A sender teleports the unknown state conclusively to a receiver by using the positive operator valued measure(POVM) and introducing an ancillary qudit to perform the generalized Bell basis measurement, We calculate the optimal teleportation fidelity. We also discuss and analyse the reason why the information on the teleported state is lost in the course of the protocol,
基金Supported by the National Basic Research Program of China (973 Program) under Grant No.2007CB311100the National Natural Science Foundation of China under Grant No.60873191+3 种基金the National High Technology Research and Development Program of China under Grant No.2006AA01Z419the Major Research plan of the National Natural Science Foundation of China under Grant No.90604023the Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No.KM200810005004the Scientific Research Foundation for the Youth of Beijing University of Technology under Grant No.97007016200701
文摘We present a (t, .n) threshold multiparty controlled quantum teleportation protocol of an arbitrary m-qubit quantum state between two remote parties. The unknown m-qubit quantum state can be recovered by the receiver under control of a subset of the n controllers if the number of the subset is larger than or equal to a threshold, say, t, but not for any t - 1 or fewer controllers. Our scheme seems to be more practical and more flexible than other existing protocols. The quantum resource required is just m Einstein-Podolsky-Rosen (EPR) pairs plus some single photons. The techniques required are only Bell state measurement, single-qubit unitary operation and yon Neumann measurement. So our scheme is also feasible with present-day technique.
文摘This paper provides a scheme for generating maximally entangled qubit states in the anti-Jaynes-Cummings interaction mechanism, so called entangled anti-polariton qubit states. We demonstrate that in an initial vacuum-field, Rabi oscillations in a cavity mode in the anti-Jaynes-Cummings interaction process, occur in the reverse sense relative to the Jaynes-Cummings interaction process and that time evolution of entanglement in the anti-Jaynes-Cummings interaction process takes the same form as in the Jaynes-Cummings interaction process. With the generated anti-polariton qubit state as one of the initial qubits, we present quantum teleportation of an atomic quantum state by applying entanglement swapping protocol achieving an impressive maximal teleportation fidelity <img src="Edit_d5204c26-d504-4580-bc0d-7379086587a2.bmp" alt="" />.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11071178)
文摘We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful probability and fidelity of the four schemes reach 1. In the first two schemes, the receiver can only apply one of the unitary transformations to reconstruct the original state, making it easier for these two schemes to be directly realized. In the third and fourth schemes, the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes, which makes real experiments more suitable. It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification. Finally, we present a new scheme for three-party sharing an arbitrary unknown multi-particle state. In this scheme, the sender first shares three three-particle GHZ states with two agents. After setting up the secure quantum channel, an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements, and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements. The successful probability and fidelity of this scheme also reach 1. It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents.
基金The project supported by the National Natural Science Foundation of China under Grant No. 60678022, the Key Program of the Education Department of Anhui Province under Grant Nos. 2006KJ070A, 2006KJ057B and the Talent Foundation of Anhui University
文摘In this paper, two schemes for teleporting an unknown two-particle entangled state from the sender (Alice) to the receiver (Bob) via a four-particle entangled cluster state are proposed. In these two schemes, the unknown twoparticle entangled state can be teleported perfectly. The successful probabilities and fidelities of the schemes can reach unity.
文摘Two kinds of -particle d-dimensional Schmidt-form entangled state teleportation protocols are presented. In the first protocol, the teleportation is achieved by -dimensional Bell-basis measurements, while in the second protocol it is realized by -dimensional GHZ-basis measurement.
文摘A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.
文摘The teleportation of an arbitrary n-particle state is proposed if n pairs of identical EPR states are utilized as quantum channels. Independent Bell state measurements are performed for joint measurement. By using a special Latin square of order , explicit expressions of outcomes after the Bell state measurements by Alice (sender) and the corresponding unitary transformations by Bob (receiver) can be derived. It is shown that the teleportation of n-particle state can be implemented by a series of single-qubit teleportation.
文摘We present a method to teleport multi-qubit quantum information in an easy way from a sender to a receiver via the control of many agents in a network. Only when all the agents collaborate with the quantum information receiver can the unknown states in the sender's qubits be fully reconstructed in the receiver's qubits. In our method, agents's control parameters are obtained via quantum entanglement swapping. As the realization of the many-agent controlled teleportation is concerned, compared to the recent method [G.P. Yang, et al., Phys. Rev. A 70 (2004) 022329], our present method considerably reduces the preparation difficulty of initial states and the identification difficulty of entangled states, moreover, it does not need local Hadamard operations and it is more feasible in technology.
基金supported by the National High Technology Development Program of China (Grant No 2006AA01Z419)the Major Research Plan of the National Natural Science Foundation of China (Grant No 90604023)+2 种基金the National Laboratory for Modern Communications Science Foundation of China (Grant No 9140C1101010601)the Natural Science Foundation of Beijing of China(Grant No 4072020)the Integrated Services Network Open Foundation
文摘The quantum secure direct communication (QSDC) protocol with a random basis and order is analysed and an effective attack, i.e. teleportation attack, is presented. An eavesdropper can obtain half of the transmitted secret bits with the help of this special attack. It is shown that quantum teleportation can be employed to weaken the role of the order-rearrangement encryption at least in a certain circumstance. Meanwhile, a possible improvement on this protocol is proposed, which makes it secure against this kind of attack.
文摘The teleportation of an arbitrary n-particle state is proposed when n pairs of entangled particles are utilized as quantum channels. It can be successfully realized with a certain probability which is determined by the smallest coefficients of n entangled pairs. Using a Latin square of order 2n, explicit expressions of two unitary operations corresponding to different Bell-basis measurements performed by Alice can be obtained at the end of Bob.
文摘In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.
文摘A scheme for probabilistic teleporting an unknown two-particle state of general formation by partly pure entangled four-particle state is proposed. It is shown that after performing two Bell state measurements, proper unitary transformation and the measurement on an auxiliary qubit, the unknown two-particle state of general formation, which was destroyed at one place, can be reconstructed at another place with certain probability.
文摘A scheme of teleportation of an arbitrary three-particle state is presented when three pairs of entangled particles are used as quantum channels. After the Bell state measurements are operated by the sender, the original state with deterministic probability can be reconstructed by the receiver when a corresponding unitary transformation is followed.
基金The project supported by the Fund from Hunan University of Science and Engineering
文摘We present a theoretical scheme for perfect teleportation of an unknown multipartite two-level state by a single EPR (Einstein-Podolsky-Rosen) pair, and then generalize it to multilevel, i.e., an N-quNit state can be teleported by a single quNit entangled pair, with additional local unitary operations. The feature of the scheme is that teleporting a multipartite state with a reduced amount of entanglement costs less classical bits.
基金Project supported by the National Natural Science Foundation of China (Grant No 10225421).
文摘An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 1044711.6 and 10325521 and the China Postdoctoral Science Foundation under Grant No. 2005038316
文摘Natural thermal entanglement between two qubits with XXX Heisenberg interaction is studied. For the antiferromagnet, increasing coupling strength or decreasing temperature under critical point increases the entanglement. Based on the thermal entanglement as quantum channel, entanglement and information of an input entangled state are transferred via partial teleportation. We find that the entanglement transferred will be lost du~ing the process, and for the entanglement fidelity the partial teleportation is superior to classical communication as concurrence of entangled channel beyond 1/4. We show that both correlation information in input entangled state and individual information of the teleported particle are linearly dissipated. With more entanglement in quantum channel, more entanglement and correlation information can be transferred.