In this paper, we accomplish the teleportation of an unknown three-particle maximally entangled W state by using a spin-path entangled quantum channel which may be realized experimentally based on the advanced theory ...In this paper, we accomplish the teleportation of an unknown three-particle maximally entangled W state by using a spin-path entangled quantum channel which may be realized experimentally based on the advanced theory and technique in Bose-Einstein condensate (BEC) of molecule, micro-fabricated wave guide and simple quantum logic gate. Similarly, we can make an arbitrary n-particle entangled Greenberger Horne-Zeilinger (GHZ) state (n ≥ 4) teleported through this kind of quantum channel. It may have important applications due to its resource-economic and practical features.展开更多
Utilizing a three-particle W state, we come up with a protocol for the teleportation of an unknown two-particle entangled state. It is shown that the teleportation can be deterministically and exactly realized. Moreov...Utilizing a three-particle W state, we come up with a protocol for the teleportation of an unknown two-particle entangled state. It is shown that the teleportation can be deterministically and exactly realized. Moreover, two-particle entanglement teleportation is generalized to a system consisting of many particles via a three-particle W state and a multi-particle W state, respectively. All unitary transformations performed by the receiver are given in a concise formula.展开更多
This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state t...This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.展开更多
Two schemes of teleporting an N-particle arbitrary and unknown state are proposed when N groups of three- particle general W states are utilized as quantum channels. In the first scheme, the quantum channels are share...Two schemes of teleporting an N-particle arbitrary and unknown state are proposed when N groups of three- particle general W states are utilized as quantum channels. In the first scheme, the quantum channels are shared by the sender and the recipient. After the sender's Bell-state measurements on his (her) particles, the recipient carries out unitary transformations on his (her) particles. And then, the recipient performs computational basis measurements to realize the teleportation. The recipient can recover the state on either of particle sequences with the equal maximal probability of successful teleportation if he (she) performs appropriate unitary transformations. In the second scheme, the quantum channels are shared by the sender, the recipient and the third ones. After the sender's Be11-state measurements and the third ones' computational basis measurements if they agree to cooperate, the recipient will introduce auxiliary particles and carry out appropriate unitary transformations. Finally, the recipient performs computational basis measurements to fulfill the teleportation. The second scheme can be realized if and only if the third ones agree to cooperate with the recipient.展开更多
We present an effective scheme to teleport an unknown ionic entangled internal state via trapped ions without joint Bell-state measurement. In the constructed quantum channel process, we adopt entanglement swapping to...We present an effective scheme to teleport an unknown ionic entangled internal state via trapped ions without joint Bell-state measurement. In the constructed quantum channel process, we adopt entanglement swapping to avoid decrease of entanglement during the distribution of particles. Thus our scheme provides new prospects for quantum teleportation over longer distance. The distinct advantages of our scheme are that our scheme is insensitive to heating of vibrational mode and can be generalized to teleport an N-ion electronic entangled GHZ class state. Furthermore, in our scheme the success probability can reach 1.展开更多
We outline a scheme for entanglement swapping based on cavity QED as well as quasi-Bell state measurement(quasiBSM) methods. The atom–field interaction in the cavity QED method is performed in small and large detunin...We outline a scheme for entanglement swapping based on cavity QED as well as quasi-Bell state measurement(quasiBSM) methods. The atom–field interaction in the cavity QED method is performed in small and large detuning regimes.We assume two atoms are initially entangled together and, distinctly two cavities are prepared in an entangled coherent–coherent state. In this scheme, we want to transform entanglement to the atom-field system. It is observed that, the fidelities of the swapped entangled state in the quasi-BSM method can be compatible with those obtained in the small and large detuning regimes in the cavity QED method(the condition of this compatibility will be discussed). In addition, in the large detuning regime, the swapped entangled state is obtained by detecting and quasi-BSM approaches. In the continuation,by making use of the atom–field entangled state obtained in both approaches in a large detuning regime, we show that the atomic as well as field states teleportation with complete fidelity can be achieved.展开更多
In this scheme, N non-maximally entangled particle pairs are used as quantum channel to teleport an unknown N-particle entangled GHZ state via entanglement swapping. In order to realize this teleportation, the sender ...In this scheme, N non-maximally entangled particle pairs are used as quantum channel to teleport an unknown N-particle entangled GHZ state via entanglement swapping. In order to realize this teleportation, the sender Alice operates Bell-state measurement on particles belonging to herself. Then she informs the results to the receiver Bob through classical communication. According to the results, Bob operates corresponding transformation to reconstruct the initial state. The advantage of this scheme is that it needs only one common unitary matrix for Alice's different results, which has a more general meaning. As a special case, teleporting an unknown three-particle entangled GHZ state is proposed.展开更多
In this paper, we investigate perfect quantum teleportation and dense coding by using an 2N-qubit W state channel. In the quantum teleportation scheme, an unknown N-qubit entangled state can be perfectly teleported. O...In this paper, we investigate perfect quantum teleportation and dense coding by using an 2N-qubit W state channel. In the quantum teleportation scheme, an unknown N-qubit entangled state can be perfectly teleported. One ebit of entanglement and two bits of classical communication are consumed in the teleportation process, just like when using the Bell state channel. While N + 1 bits of classical information can be transmitted by only sending N particles in the dense coding protocol.展开更多
A scheme of teleportation of a tripartite state via W state is suggested. The W state serves as quantum channels. Standard Bell-state measurements and Von Neumann measurements are performed. After the sender operates ...A scheme of teleportation of a tripartite state via W state is suggested. The W state serves as quantum channels. Standard Bell-state measurements and Von Neumann measurements are performed. After the sender operates the measurements and informs the receiver her results, he can reconstruct the original state by the corresponding unitary transformation. The probability of the successful teleportation is also obtained.展开更多
In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second sche...In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.展开更多
Two schemes for teleporting an unknown one-particle state are proposed when a general W state is utilized as quantum channel. In the first scheme, after the sender (Alice) makes a Bell-state measurement on her parti...Two schemes for teleporting an unknown one-particle state are proposed when a general W state is utilized as quantum channel. In the first scheme, after the sender (Alice) makes a Bell-state measurement on her particles, the recipient (Bob) performs a Von Neumann measurement and introduces an auxiliary particle, and carries out a unitary transformation on his particle and the auxiliary particle, and performs a Von Neumann measurement on the auxiliary particle to confirm whether the teleportation succeeds or not. In the second scheme, the recipient (Bob) does not need to perform the first Von Neumann measurement or introduce the auxiliary particle, which is necessary in the first scheme. It is shown that the maxima/probabilities of successful teleportation of the two schemes are identical if the recipient (Bob) performs an appropriate unitary transformation and adopts a proper particle on which he recovers the quantum information of state to be teleported.展开更多
A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W st...A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W states. An unknown three-particle GHZ state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and the Hadamard operation while either one of two receivers introduces an ancillary particle which is one of the final three particle constituting the teleported state, then performs the controlled-not operation with the ancillary particle as the target bit and introduces an appropriate unitary transformation with the help of the other receiver's simple measurements. All kinds of unitary transformations are given in detail. The present scheme may be directly generalized to teleport an unknown multiparticle GHZ state via two three-particle entangled W states used as the quantum channel.展开更多
In this paper, quantum teleportatlon of one-to-many using (n +1)-particle entanglement is presented. If the sender (Alice) wants to transmit an unknown quantum state to a distant receiver (Bob), similar to the ...In this paper, quantum teleportatlon of one-to-many using (n +1)-particle entanglement is presented. If the sender (Alice) wants to transmit an unknown quantum state to a distant receiver (Bob), similar to the previous schemes, Alice performs Bell-state measurement on particles belonging to herself and informs the receiver the results through the classical channel. After that, it needs to perform the Hadamard operation on the other (n - 1) particles and measure them as well. With the aid of the measurement results, Bob can operate a corresponding unitary transformation on his particle to reconstruct the original state. Of course, the reconstruction may realize at either location of n, but it cannot realize at all locations at the same time.展开更多
The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitu...The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitude but a phase difference of π is utilized as a quantum channel. The processes of the entanglement diversion and the teleportation are achieved by using the 50/50 symmctric beam splitters, the phase shifters and the photodetectors with the help of classical information.展开更多
In this paper a controlled quantum teleportation scheme of an N-particle unknown state is proposed when N groups of three-particle W1 states are utilized as quantum channels. The quantum information of N-particle unkn...In this paper a controlled quantum teleportation scheme of an N-particle unknown state is proposed when N groups of three-particle W1 states are utilized as quantum channels. The quantum information of N-particle unknown state is transmitted from the sender to the recipient under the control of all supervisors. It can be realized with a certain probability. After the sender makes Bell-state measurements and the supervisors perform the computational basis measurements, the recipient will introduce auxiliary particles and carry out unitary transformations depending on classical information from the sender and the supervisors. Finally, the computational basis measurement will be performed by the recipient to confirm whether the teleportation succeeds or not. The successful completion of the scheme relies on all supervisors' cooperation. In addition, the fidelity and security of the scheme are discussed.展开更多
In the paper (Phys. Rev. 2006 A 4 062320) Agrawal et al. have introduced a kind of W-class state which can be used for the quantum teleportation of single-particle state via a three-particle von Neumann measurement,...In the paper (Phys. Rev. 2006 A 4 062320) Agrawal et al. have introduced a kind of W-class state which can be used for the quantum teleportation of single-particle state via a three-particle von Neumann measurement, and they thought that the state could not be used to teleport an unknown state by making two-particle and one-particle measurements. Here we reconsider the features of the W-class state and the quantum teleportation process via the W-class state. We show that, by introducing a unitary operation, the quantum teleportation can be achieved deterministically by making two-particle and one-particle measurements. In addition, our protocol is extended to the process of teleporting two-particle state and splitting information.展开更多
A new scheme for quantum teleportation of single quantum bit state with using continuous variables entangling channel is presented. In our scheme two entangled light fields are employed. An outstanding characteristic ...A new scheme for quantum teleportation of single quantum bit state with using continuous variables entangling channel is presented. In our scheme two entangled light fields are employed. An outstanding characteristic of this scheme is that one atomic state is transmitted directly to another atom without using the third atom as the mediate.展开更多
We propose a most simple and experimentally feasible scheme for teleporting unknown atomic entangled states in driven cavity quantum electrodynamics (QED). In our scheme, the joint Bell-state measurement (BSM) is ...We propose a most simple and experimentally feasible scheme for teleporting unknown atomic entangled states in driven cavity quantum electrodynamics (QED). In our scheme, the joint Bell-state measurement (BSM) is not required, and the successful probability can reach 1.0. Furthermore, the scheme is insensitive to the cavity decay and the thermal field.展开更多
Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, an...Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, and then propose a novel high-efficiency quantum information hiding protocol based on the covert layer. In the proposed scheme, a covert channel can be built up under the cover of a high-level quantum secure direct communication (QSDC) channel for securely transmitting secret messages without consuming any auxiliary quantum state or any extra communication resource. It is shown that this protocol not only has a high embedding efficiency but also achieves a good imperceptibility as well as a high security.展开更多
We propose a practical entanglement concentration protocol (ECP) for a hybrid entangled state using quantum dots and a microcavity coupled system. A hybrid less-entangled state can he concentrated to a most-entangle...We propose a practical entanglement concentration protocol (ECP) for a hybrid entangled state using quantum dots and a microcavity coupled system. A hybrid less-entangled state can he concentrated to a most-entangled state with a certain probability using only one ancillary single photon. Moreover, using this protocol, we can also concentrate an arbitrary three-particle less-entangled W state using two ancillary photons and classical communication. The proposed protocols provide us with a useful method to concentrate less-entangled states, which can he implemented with current technology.展开更多
基金Projects supported by the National Natural Science Foundation of China (Grant No 10374025)the Natural Science Foundation of Hunan Province, China (Grant No 07JJ3013)the Education Ministry of Hunan Province, China (Grant No 06A038)
文摘In this paper, we accomplish the teleportation of an unknown three-particle maximally entangled W state by using a spin-path entangled quantum channel which may be realized experimentally based on the advanced theory and technique in Bose-Einstein condensate (BEC) of molecule, micro-fabricated wave guide and simple quantum logic gate. Similarly, we can make an arbitrary n-particle entangled Greenberger Horne-Zeilinger (GHZ) state (n ≥ 4) teleported through this kind of quantum channel. It may have important applications due to its resource-economic and practical features.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60873191 and 60821001)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800131016)+4 种基金the Key Project of Chinese Ministry of Education (Grant No. 109014)the China Postdoctoral Science Foundation Funded Project (Grant No. 20090450018)the Beijing Natural Science Foundation (Grant No. 4072020)the 111 Project (Grant No. B08004)the National Basic Research Program of China (Grant No. 2007CB311203)
文摘Utilizing a three-particle W state, we come up with a protocol for the teleportation of an unknown two-particle entangled state. It is shown that the teleportation can be deterministically and exactly realized. Moreover, two-particle entanglement teleportation is generalized to a system consisting of many particles via a three-particle W state and a multi-particle W state, respectively. All unitary transformations performed by the receiver are given in a concise formula.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10647101 and 10704011
文摘Two schemes of teleporting an N-particle arbitrary and unknown state are proposed when N groups of three- particle general W states are utilized as quantum channels. In the first scheme, the quantum channels are shared by the sender and the recipient. After the sender's Bell-state measurements on his (her) particles, the recipient carries out unitary transformations on his (her) particles. And then, the recipient performs computational basis measurements to realize the teleportation. The recipient can recover the state on either of particle sequences with the equal maximal probability of successful teleportation if he (she) performs appropriate unitary transformations. In the second scheme, the quantum channels are shared by the sender, the recipient and the third ones. After the sender's Be11-state measurements and the third ones' computational basis measurements if they agree to cooperate, the recipient will introduce auxiliary particles and carry out appropriate unitary transformations. Finally, the recipient performs computational basis measurements to fulfill the teleportation. The second scheme can be realized if and only if the third ones agree to cooperate with the recipient.
基金Supported by the National Natural Science Foundation of China under Grant No 10374025.
文摘We present an effective scheme to teleport an unknown ionic entangled internal state via trapped ions without joint Bell-state measurement. In the constructed quantum channel process, we adopt entanglement swapping to avoid decrease of entanglement during the distribution of particles. Thus our scheme provides new prospects for quantum teleportation over longer distance. The distinct advantages of our scheme are that our scheme is insensitive to heating of vibrational mode and can be generalized to teleport an N-ion electronic entangled GHZ class state. Furthermore, in our scheme the success probability can reach 1.
文摘We outline a scheme for entanglement swapping based on cavity QED as well as quasi-Bell state measurement(quasiBSM) methods. The atom–field interaction in the cavity QED method is performed in small and large detuning regimes.We assume two atoms are initially entangled together and, distinctly two cavities are prepared in an entangled coherent–coherent state. In this scheme, we want to transform entanglement to the atom-field system. It is observed that, the fidelities of the swapped entangled state in the quasi-BSM method can be compatible with those obtained in the small and large detuning regimes in the cavity QED method(the condition of this compatibility will be discussed). In addition, in the large detuning regime, the swapped entangled state is obtained by detecting and quasi-BSM approaches. In the continuation,by making use of the atom–field entangled state obtained in both approaches in a large detuning regime, we show that the atomic as well as field states teleportation with complete fidelity can be achieved.
基金The project supported by the Natural Science Foundation of Jiangsu Province of China under Grant No. Q1108404.
文摘In this scheme, N non-maximally entangled particle pairs are used as quantum channel to teleport an unknown N-particle entangled GHZ state via entanglement swapping. In order to realize this teleportation, the sender Alice operates Bell-state measurement on particles belonging to herself. Then she informs the results to the receiver Bob through classical communication. According to the results, Bob operates corresponding transformation to reconstruct the initial state. The advantage of this scheme is that it needs only one common unitary matrix for Alice's different results, which has a more general meaning. As a special case, teleporting an unknown three-particle entangled GHZ state is proposed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10971247 and 10905016)Natural Science Foundation of Hebei Province of China (Grant Nos. F2009000311 and A2010000344)the Science Foundation of Hebei Normal University (Grant No. L2010Q04)
文摘In this paper, we investigate perfect quantum teleportation and dense coding by using an 2N-qubit W state channel. In the quantum teleportation scheme, an unknown N-qubit entangled state can be perfectly teleported. One ebit of entanglement and two bits of classical communication are consumed in the teleportation process, just like when using the Bell state channel. While N + 1 bits of classical information can be transmitted by only sending N particles in the dense coding protocol.
文摘A scheme of teleportation of a tripartite state via W state is suggested. The W state serves as quantum channels. Standard Bell-state measurements and Von Neumann measurements are performed. After the sender operates the measurements and informs the receiver her results, he can reconstruct the original state by the corresponding unitary transformation. The probability of the successful teleportation is also obtained.
文摘In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.
文摘Two schemes for teleporting an unknown one-particle state are proposed when a general W state is utilized as quantum channel. In the first scheme, after the sender (Alice) makes a Bell-state measurement on her particles, the recipient (Bob) performs a Von Neumann measurement and introduces an auxiliary particle, and carries out a unitary transformation on his particle and the auxiliary particle, and performs a Von Neumann measurement on the auxiliary particle to confirm whether the teleportation succeeds or not. In the second scheme, the recipient (Bob) does not need to perform the first Von Neumann measurement or introduce the auxiliary particle, which is necessary in the first scheme. It is shown that the maxima/probabilities of successful teleportation of the two schemes are identical if the recipient (Bob) performs an appropriate unitary transformation and adopts a proper particle on which he recovers the quantum information of state to be teleported.
基金The project supported by National Natural Science Foundation of Chins under Grant No. 10574022 and the Natural Science Foundation of Fujian Province of China under Grant No. Z0512006
文摘A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W states. An unknown three-particle GHZ state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and the Hadamard operation while either one of two receivers introduces an ancillary particle which is one of the final three particle constituting the teleported state, then performs the controlled-not operation with the ancillary particle as the target bit and introduces an appropriate unitary transformation with the help of the other receiver's simple measurements. All kinds of unitary transformations are given in detail. The present scheme may be directly generalized to teleport an unknown multiparticle GHZ state via two three-particle entangled W states used as the quantum channel.
基金The project supported by the Natural Science Foundation of .Jiangsu Province of China under Grant No. Q1108404
文摘In this paper, quantum teleportatlon of one-to-many using (n +1)-particle entanglement is presented. If the sender (Alice) wants to transmit an unknown quantum state to a distant receiver (Bob), similar to the previous schemes, Alice performs Bell-state measurement on particles belonging to herself and informs the receiver the results through the classical channel. After that, it needs to perform the Hadamard operation on the other (n - 1) particles and measure them as well. With the aid of the measurement results, Bob can operate a corresponding unitary transformation on his particle to reconstruct the original state. Of course, the reconstruction may realize at either location of n, but it cannot realize at all locations at the same time.
文摘The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented. In these proposals, the entanglement between two coherent states, |α〉 and |-α〉, with the same amplitude but a phase difference of π is utilized as a quantum channel. The processes of the entanglement diversion and the teleportation are achieved by using the 50/50 symmctric beam splitters, the phase shifters and the photodetectors with the help of classical information.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647101).
文摘In this paper a controlled quantum teleportation scheme of an N-particle unknown state is proposed when N groups of three-particle W1 states are utilized as quantum channels. The quantum information of N-particle unknown state is transmitted from the sender to the recipient under the control of all supervisors. It can be realized with a certain probability. After the sender makes Bell-state measurements and the supervisors perform the computational basis measurements, the recipient will introduce auxiliary particles and carry out unitary transformations depending on classical information from the sender and the supervisors. Finally, the computational basis measurement will be performed by the recipient to confirm whether the teleportation succeeds or not. The successful completion of the scheme relies on all supervisors' cooperation. In addition, the fidelity and security of the scheme are discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10404007 and 60578055)the State Key Program for Basic Research of China (Grant No. 2007CB925204)
文摘In the paper (Phys. Rev. 2006 A 4 062320) Agrawal et al. have introduced a kind of W-class state which can be used for the quantum teleportation of single-particle state via a three-particle von Neumann measurement, and they thought that the state could not be used to teleport an unknown state by making two-particle and one-particle measurements. Here we reconsider the features of the W-class state and the quantum teleportation process via the W-class state. We show that, by introducing a unitary operation, the quantum teleportation can be achieved deterministically by making two-particle and one-particle measurements. In addition, our protocol is extended to the process of teleporting two-particle state and splitting information.
基金Project supported by the Natural Science Foundation of Anhui Province,China (Grant No. 090412060)the Natural Science Foundation of the Education Committee of Anhui Province,China (Grant No. KJ2008A029)
文摘A new scheme for quantum teleportation of single quantum bit state with using continuous variables entangling channel is presented. In our scheme two entangled light fields are employed. An outstanding characteristic of this scheme is that one atomic state is transmitted directly to another atom without using the third atom as the mediate.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘We propose a most simple and experimentally feasible scheme for teleporting unknown atomic entangled states in driven cavity quantum electrodynamics (QED). In our scheme, the joint Bell-state measurement (BSM) is not required, and the successful probability can reach 1.0. Furthermore, the scheme is insensitive to the cavity decay and the thermal field.
基金supported by the National Natural Science Foundation of China(Grant Nos.61303199,61272514,61170272,61121061,and 61411146001)the Shandong Provincial Natural Science Foundation of China(Grant Nos.ZR2013FM025,ZR2013FQ001,and ZR2014FM003)+4 种基金the Shandong Provincial Outstanding Research Award Fund for Young Scientists of China(Grant Nos.BS2013DX010 and BS2014DX007)the Program for New Century Excellent Talents in Universities,China(Grant No.NCET-13-0681)the National Development Foundation for Cryptological Research,China(Grant No.MMJJ201401012)the Fok Ying Tong Education Foundation,China(Grant No.131067)the Shandong Academy of Sciences Youth Fund Project,China(Grant No.2013QN007)
文摘Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, and then propose a novel high-efficiency quantum information hiding protocol based on the covert layer. In the proposed scheme, a covert channel can be built up under the cover of a high-level quantum secure direct communication (QSDC) channel for securely transmitting secret messages without consuming any auxiliary quantum state or any extra communication resource. It is shown that this protocol not only has a high embedding efficiency but also achieves a good imperceptibility as well as a high security.
基金Project supported by the National Basic Research Program of China (Grant No. 2010CB923202)the Specialized Research Fund for the Doctoral Program of Ministry of Education of China (Grant No.20090005120008)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe National Natural Science Foundation of China (Grant Nos. 60937003,61178010,and 61205117)
文摘We propose a practical entanglement concentration protocol (ECP) for a hybrid entangled state using quantum dots and a microcavity coupled system. A hybrid less-entangled state can he concentrated to a most-entangled state with a certain probability using only one ancillary single photon. Moreover, using this protocol, we can also concentrate an arbitrary three-particle less-entangled W state using two ancillary photons and classical communication. The proposed protocols provide us with a useful method to concentrate less-entangled states, which can he implemented with current technology.