Teleseismic traveltime tomography is an important tool for investigating the crust and mantle structure of the Earth.The imaging quality of teleseismic traveltime tomography is affected by many factors,such as mantle ...Teleseismic traveltime tomography is an important tool for investigating the crust and mantle structure of the Earth.The imaging quality of teleseismic traveltime tomography is affected by many factors,such as mantle heterogeneities,source uncertainties and random noise.Many previous studies have investigated these factors separately.An integral study of these factors is absent.To provide some guidelines for teleseismic traveltime tomography,we discussed four main influencing factors:the method for measuring relative traveltime differences,the presence of mantle heterogeneities outside the imaging domain,station spacing and uncertainties in teleseismic event hypocenters.Four conclusions can be drawn based on our analysis.(1)Comparing two methods,i.e.,measuring the traveltime difference between two adjacent stations(M1)and subtracting the average traveltime of all stations from the traveltime of one station(M2),reveals that both M1 and M2 can well image the main structures;while M1 is able to achieve a slightly higher resolution than M2;M2 has the advantage of imaging long wavelength structures.In practical teleseismic traveltime tomography,better tomography results can be achieved by a two-step inversion method.(2)Global mantle heterogeneities can cause large traveltime residuals(up to about 0.55 s),which leads to evident imaging artifacts.(3)The tomographic accuracy and resolution of M1 decrease with increasing station spacing when measuring the relative traveltime difference between two adjacent stations.(4)The traveltime anomalies caused by the source uncertainties are generally less than 0.2 s,and the impact of source uncertainties is negligible.展开更多
Teleseismic body wave traveltime tomography is used to inverse the three-dimensional seismic velocity structure beneath Shizigou in the western Qaidam basin. The travel time are picked from the continuous observation ...Teleseismic body wave traveltime tomography is used to inverse the three-dimensional seismic velocity structure beneath Shizigou in the western Qaidam basin. The travel time are picked from the continuous observation data on a small seismic array of stations deployed during 2004-2007. The tomographic results obtained indicate that a NW-trending low velocity anomaly just beneath the target region insert northeastwards with a high dip angle. In the north, northeast and east of the low velocity anomaly, some high-velocity anomalies distribute with the same strike and coverage as those of Shizigou anticline.展开更多
基金supported by the National Institute of Natural Hazards,Ministry of Emergency Management of China(No.ZDJ2019-18)the Open Fund Project of the State Key Laboratory of Lithospheric Evolution(No.SKL-K202101)+1 种基金the National Natural Science Foundation of China(Nos.42174111 and 42064004)the National Natural Science Foundation of China(No.U1839206).
文摘Teleseismic traveltime tomography is an important tool for investigating the crust and mantle structure of the Earth.The imaging quality of teleseismic traveltime tomography is affected by many factors,such as mantle heterogeneities,source uncertainties and random noise.Many previous studies have investigated these factors separately.An integral study of these factors is absent.To provide some guidelines for teleseismic traveltime tomography,we discussed four main influencing factors:the method for measuring relative traveltime differences,the presence of mantle heterogeneities outside the imaging domain,station spacing and uncertainties in teleseismic event hypocenters.Four conclusions can be drawn based on our analysis.(1)Comparing two methods,i.e.,measuring the traveltime difference between two adjacent stations(M1)and subtracting the average traveltime of all stations from the traveltime of one station(M2),reveals that both M1 and M2 can well image the main structures;while M1 is able to achieve a slightly higher resolution than M2;M2 has the advantage of imaging long wavelength structures.In practical teleseismic traveltime tomography,better tomography results can be achieved by a two-step inversion method.(2)Global mantle heterogeneities can cause large traveltime residuals(up to about 0.55 s),which leads to evident imaging artifacts.(3)The tomographic accuracy and resolution of M1 decrease with increasing station spacing when measuring the relative traveltime difference between two adjacent stations.(4)The traveltime anomalies caused by the source uncertainties are generally less than 0.2 s,and the impact of source uncertainties is negligible.
基金supported by Special Fund for National Oil and Gas (XQ-2004-01)International Program for Science and Technology Cooperation (2006DFA21350).
文摘Teleseismic body wave traveltime tomography is used to inverse the three-dimensional seismic velocity structure beneath Shizigou in the western Qaidam basin. The travel time are picked from the continuous observation data on a small seismic array of stations deployed during 2004-2007. The tomographic results obtained indicate that a NW-trending low velocity anomaly just beneath the target region insert northeastwards with a high dip angle. In the north, northeast and east of the low velocity anomaly, some high-velocity anomalies distribute with the same strike and coverage as those of Shizigou anticline.