Single-cell imaging,a powerful analytical method to study single-cell behavior,such as gene expression and protein profiling,provides an essential basis for modern medical diagnosis.The coding and localization functio...Single-cell imaging,a powerful analytical method to study single-cell behavior,such as gene expression and protein profiling,provides an essential basis for modern medical diagnosis.The coding and localization function of microfluidic chips has been developed and applied in living single-cell imaging in recent years.Simultaneously,chip-based living single-cell imaging is also limited by complicated trapping steps,low cell utilization,and difficult high-resolution imaging.To solve these problems,an ultra-thin temperature-controllable microwell array chip(UTCMA chip)was designed to develop a living single-cell workstation in this study for continuous on-chip culture and real-time high-resolution imaging of living single cells.The chip-based on ultra-thin ITO glass is highly matched with an inverted microscope(or confocal microscope)with a high magnification objective(100×oil lens),and the temperature of the chip can be controlled by combining it with a home-made temperature control device.High-throughput single-cell patterning is realized in one step when the microwell array on the chip uses hydrophilic glass as the substrate and hydrophobic SU-8 photoresist as the wall.The cell utilization rate,single-cell capture rate,and microwell occupancy rate are all close to 100%in the microwell array.This method will be useful in rare single-cell research,extending its application in the biological and medical-related fields,such as early diagnosis of disease,personalized therapy,and research-based on single-cell analysis.展开更多
Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ...Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.展开更多
As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study ai...As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.展开更多
Temperature, as an important feature of hydroponic nutrient solution, is closely related to dissolved oxygen content of nutrient solution and growth status of plant roots. How to precisely adjust the temperature of nu...Temperature, as an important feature of hydroponic nutrient solution, is closely related to dissolved oxygen content of nutrient solution and growth status of plant roots. How to precisely adjust the temperature of nutrient solution is the key to obtain high quality and high yield of hydroponic vegetables over summer. With Lactuca sativa vat. crispa 'Luosheng No.3' as the test material, the effect of chiller cooling technology on the temperature of nutrient solution, as well as on the yield and quality of Luosheng No.3, in over-summer hydroponic cultivation was studied. The results showed that the chiller cooling technology controlled the nutrient solution temperature in a reasonable range ((20 ± 1)℃) and promoted the growth and dry matter accumulation of Luosheng No.3, instead of affecting the quality. In short, the chiller cooling technology is applicable to the temperature regulation of nutrient solu- tion in hydroponics over summer.展开更多
Deep-Litter System is a high yield approach to raise swine with pollution free in a lower cost. In the research, based on the heat stress in summer caused by fermentation, three temperature-control systems were design...Deep-Litter System is a high yield approach to raise swine with pollution free in a lower cost. In the research, based on the heat stress in summer caused by fermentation, three temperature-control systems were designed, including natural ventilation through transoms, forced ventilation via fans, and cooling by hyperbaric spray system. Specifically, the latter intermittent auto-pressurized spray system developed in our lab, which could spray successively via pressure from storage tubes without wetting the fermentation bed, is suitable for the promotion with the deep-litter technology in rural regions , since the power consumption is only 1 kwh per day.展开更多
In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel referenc...In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel reference point based preference expression method is addressed.The fitness assignment function is defined based on the nondominated rank and the newly defined preference distance.An archive set is introduced for saving the nondominated solutions and an improved crowding-distance operator is addressed to remove the extra solutions in the archive.The experimental results of two benchmark test functions show that a preferred set of solutions and some other non-preference solutions are achieved simultaneously.The simulation results of the proportional-integral-derivative PID parameter optimization for superheated steam temperature verify that the PMABCA is efficient in aiding to making a reasonable decision.展开更多
Methods to optimize the production of gamma-aminobutyric acid (GABA) by Lactobacillus brevis CGMCC 1306 were investigated. Results indicated that cell growth was maximal at pH 5.0, while pH 4.5 was pref-erable to GA...Methods to optimize the production of gamma-aminobutyric acid (GABA) by Lactobacillus brevis CGMCC 1306 were investigated. Results indicated that cell growth was maximal at pH 5.0, while pH 4.5 was pref-erable to GABA formation. The optimal temperature for cell growth (35 °C) was lower than that for GABA forma-tion (40 °C). In a two-stage pH and temperature control fermentation, cultures were maintained at pH 5.0 and 35 °C for 32 h, then adjusted to pH 4.5 and 40 °C, GABA production increased remarkably and reached 474.79 mmol·L-1 at 72 h, while it was 398.63 mmol·L-1 with one stage pH and temperature control process, in which cultivation con-ditions were constantly controlled at pH 5.0 and 35 °C. In order to avoid the inhibition of cell growth at higher L-monosodium glutamate (L-MSG) concentrations, the two-stage control fermentation with substrate feeding strat-egy was applied to GABA production, with 106.87 mmol (20 g) L-MSG supplemented into the shaking-flask at 32 h and 56 h post-inoculation separately. The GABA concentration reached 526.33 mmol·L-1 at 72 h with the fer-mentation volume increased by 38%. These results will provide primary data to realize large-scale production of GABA by L. brevis CGMCC 1306.展开更多
A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain p...A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.展开更多
It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention...It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention.It is a database system with functions of data storage,information inquiry,data analysis,early warning and resource sharing.Monitoring information during construction can be digitized via this system,and the intelligent analysis and dynamic control of concrete temperature can be conducted.This method has been applied in the construction of the Dagangshan Arch Dam in China and has proven to be very convenient.Based on the decision support of this system and the dynamic adjustment of construction measures,the concrete temperature of this project is well-controlled.展开更多
A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the tem...A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the temperature and stress field of the Cao'e Sluice during the construction period. From the calculated results, we can find that the temperaiure and stress of concrete cooled with plastic pipes are much lower than those of concrete without pipes. Moreover, plastic pipes could not be corroded by seawater. That is to say, a good effect of temperature control and cracking prevention can be achieved, which provides a useful reference for other similar nearshore concrete projects.展开更多
The sheet size of a graphene oxide (GO) can greatly influence its electrical, optical, mechanical, electrochemical and catalytic property. It is a key challenge to how to control the sheet size during its preparatio...The sheet size of a graphene oxide (GO) can greatly influence its electrical, optical, mechanical, electrochemical and catalytic property. It is a key challenge to how to control the sheet size during its preparation in different application fields. According to our previous theoretical calculations of the effect of temperature on the oxidation process of graphene, we use Hummers method to prepare GOs with different sheet sizes by simply controlling the temperature condition in the process of the oxidation reaction of potassium permanganate (KMnO4) with graphene and the dilution process with deionized water. The results detected by transmission electron microscopy (TEM) and atomic force microscopy (AFM) show that the average sizes of GO sheets prepared at different temperatures are about 1 μm and 7 μm respectively. The ultraviolet-visible spectroscopy (UV-vis) shows that lower temperature can lead to smaller oxidation degrees of GO and less oxygen functional groups on the surface. In addition, we prepare GO membranes to test their mechanical strengths by ultrasonic waves, and we find that the strengths of the GO membranes prepared under low temperatures are considerably higher than those prepared under high temperatures, showing the high mechanical strengths of larger GO sheets. Our experimental results testify our previous theoretical calculations. Compared with the traditional centrifugal separation and chemical cutting method, the preparation process of GO by temperature control is simple and low-cost and also enables large-size synthesis. These findings develop a new method to control GO sheet sizes for large-scale potential applications.展开更多
A soil temperature control system was designed for sapling study in alpine region and tested in summer, 2009. The system consisted of a power switch, voltage regulator, microcomputer timer, safety relays, temperature ...A soil temperature control system was designed for sapling study in alpine region and tested in summer, 2009. The system consisted of a power switch, voltage regulator, microcomputer timer, safety relays, temperature control device, temperature sensors, heating cables, fireproofing plastic pipes (PVC), 108 heavy-duty plastic containers and seedlings. The heating cables were held in six 2-layer PVC frames with 25 cm wide, 320 cm long and 25 cm high and three 1-layer frames with 25 cm wide and 320 cm long for 15°C soil temperature treatment, half of the 2-layer frames were used for 20°C and 25°C soil temperature treatments, respectively. Each of the frames was installed at each of ditches with 30 cm wide, 330 cm long and 30 cm deep in size. 12 seedling containers with 20 cm top diameter, 18cm bottom diameter and 25 cm high were homogenously placed at each of the ditches, and spaces between the containers were filled with natural soil. The system was economic, and could increase soil temperatures obviously and uniformly, the maximal and minimal standard errors of soil temperatures were ±0.28 and ±0.05°C at 10cm depth in the containers within each of all the ditches. In the system, aboveground environment was natural, diurnal and monthly soil temperatures varied with changing air temperature, the research results may be better to know the eco-physiological and growth responses of alpine saplings/seedlings to soil warming than that in greenhouse, laboratory, infrared heat lamp and open top chamber.展开更多
The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has a...The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has acquired extensive applications in various industries. In this study, MPC is applied to the process for separating ethanol, n-propanol, and n-butanol ternary mixture in a fully thermally coupled DWC. Both composition control and tem- perature inferent/al control are considered. The multiobjective genetic algor/thm function "gamult/obj" in Matlab is used for the weight tuning of MPC. Comparisons are made between the control performances of MPC and PI strategies. Simulation results show that although both MPC and PI schemes can stabilize the DWC in case of feed disturbances, MPC generally behaves better than the PI strategy for both composition control and tempera- ture inferential control, resulting in a more stable and superior performance with lower values of integral of squared error (ISE).展开更多
In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of ...In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of the waste.In this paper,some experimental researches on the thermo-mechanical characteristics of soft sedimentary rock have been presented.For this reason,a new temperature-controlled triaxial compression and creep test device,operated automatically by a computer-controlled system,whose control software has been developed by the authors,was developed to conduct the thermo-mechanical tests in different thermal loading paths,including an isothermal path.The new device is proved to be able to conduct typical thermo-mechanical element tests for soft rock.The test device and the related testing method were introduced in detail.Finally,some test results have been simulated with a thermo-elasto-viscoplastic model that was also developed by the authors.展开更多
The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy cont...The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.展开更多
The magnetic field is one of the most important parameters in solar physics,and a polarimeter is the key device to measure the solar magnetic field.Liquid crystals based Stokes polarimeter is a novel technology,and wi...The magnetic field is one of the most important parameters in solar physics,and a polarimeter is the key device to measure the solar magnetic field.Liquid crystals based Stokes polarimeter is a novel technology,and will be applied for magnetic field measurement in the first space-based solar observatory satellite developed by China,Advanced Space-based Solar Observatory.However,the liquid crystals based Stokes polarimeter in space is not a mature technology.Therefore,it is of great scientific significance to study the control method and characteristics of the device.The retardation produced by a liquid crystal variable retarder is sensitive to the temperature,and the retardation changes 0.09°per 0.10℃.The error in polarization measurement caused by this change is 0.016,which affects the accuracy of magnetic field measurement.In order to ensure the stability of its performance,this paper proposes a high-precision temperature control system for liquid crystals based Stokes polarimeter in space.In order to optimize the structure design and temperature control system,the temperature field of liquid crystals based Stokes polarimeter is analyzed by the finite element method,and the influence of light on the temperature field of the liquid crystal variable retarder is analyzed theoretically.By analyzing the principle of highprecision temperature measurement in space,a high-precision temperature measurement circuit based on integrated operational amplifier,programmable amplifier and 12 bit A/D is designed,and a high-precision space temperature control system is developed by applying the integral separation PI temperature control algorithm and PWM driving heating films.The experimental results show that the effect of temperature control is accurate and stable,whenever the liquid crystals based Stokes polarimeter is either in the air or vacuum.The temperature stability is within±0.0150℃,which demonstrates greatly improved stability for the liquid crystals based Stokes polarimeter.展开更多
Temperature difference control(TDC)schemes can clearly suppress the adverse influence of pressure variations on product quality control of various distillation columns(DCs)by employing temperature differences(TDs)betw...Temperature difference control(TDC)schemes can clearly suppress the adverse influence of pressure variations on product quality control of various distillation columns(DCs)by employing temperature differences(TDs)between the sensitive stage temperature(T_(S))and reference stage temperature(T_(R)),i.e.,T_(S)-T_(R),to infer the controlled product qualities.However,because the TDC scheme has failed to specially take the corresponding relationship between the TD employed in each control loop and the controlled product quality into account,it may suffer from relatively large steady-state errors in the controlled product qualities.To address this problem,an enhanced TDC(ETDC)scheme is proposed in the current article,in which an enhanced TD(ETD),i.e.,T_(S)-α×T_(R),is employed to replace the conventional TD for each control loop.While the locations of the sensitive and reference stages of the ETD are respectively determined according to sensitivity analysis and SVD analysis,the adjusted coefficientαis set to be the ratio between the averaged absolute variation magnitudes(AAVMs)of the T_(S)and T_(R)so that the relationship between the T_(S)and T_(R)can be appropriately coordinated.With reference to the operations of three different distillation systems,i.e.,one conventional DC distilling an ethanol(E)/butanol(B)binary mixture,one conventional DC distilling an E/propanol(P)/B ternary mixture,and one dividing-wall distillation column distilling an E/P/B ternary mixture,the performance of the ETDC scheme is assessed by compared with the conventional TDC scheme and the double TD control(DTDC)scheme.The dynamic simulation results show that the ETDC scheme is better than the conventional TDC scheme with reduced steady-state errors in the controlled product qualities and improved dynamic responses,and is comparable with the DTDC scheme despite the less temperature measurements are employed.展开更多
A new intelligent control scheme for hot strip coiling temperature is presented. In this scheme, the prediction mode1 of finishing temperature and the presetting model of main cooling zone are establish based on BP ne...A new intelligent control scheme for hot strip coiling temperature is presented. In this scheme, the prediction mode1 of finishing temperature and the presetting model of main cooling zone are establish based on BP neural network, the feed-forward open-loop control model of main cooling zone is constructed based on T-S fuzzy neural network, a new improved structure of T-S fuzzy neural network is developed, and the feedback close-loop control model of precision cooling zone is obtained based on fuzzy control. The effectiveness of the proposed scheme has been demonstrated by computer simulation with a satisfactory result.展开更多
Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of s...Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of semiconductor refrigeration and establishes a heat transfer model. Semiconductor cooler on piping refrigeration is simulated,and influence of the parameters on the outlet temperature,such as pipe pressure difference of inlet and outlet,pipe length,pipe radius,are gotten,and then hydraulic tank semiconductor refrigeration system is proposed. The semiconductor refrigeration system can control temperature at 37 ± 1°C.展开更多
Background: MenAfriVac<sup>TM</sup> is the first of the World Health Organization (WHO)’s pre-qualified vaccines to be allowed to mass vaccination campaign at a temperature below or equal to 40°C dur...Background: MenAfriVac<sup>TM</sup> is the first of the World Health Organization (WHO)’s pre-qualified vaccines to be allowed to mass vaccination campaign at a temperature below or equal to 40°C during 4 days. This new vaccination practice has already been used in some African countries. This article described the opinion and use of this new technique by actors on the field, during a mass vaccination campaign in Côte d’Ivoire, in December 2014. Methods: We conducted a crosssectional study on the practice of CTC by actors on the field and their perception on the new practice, during a mass vaccination campaign in 2 of 25 health districts in Côte d’Ivoire, in December 2014. Findings: As results, in Séguéla 98.25% of respondents expressed a favourable opinion of CTC, citing advantages such as vaccine carriers requiring no ice packs (29.2%), financial benefit (12.28%) and lighter vaccine carriers (5.26%). In Bouna, respondents gave the same advantages in, respectively, 34%, 2% and 8% of cases. The peak of the total of vials used for immunization sessions reached 376 vials at day one, then dropped to 235 vials at day three and 220 vials at day six. Discussion: Vaccinators found some benefits related to CTC practice, but on the field, they were cautious in using CTC technique.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21625501,21936001)the Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201910005017).
文摘Single-cell imaging,a powerful analytical method to study single-cell behavior,such as gene expression and protein profiling,provides an essential basis for modern medical diagnosis.The coding and localization function of microfluidic chips has been developed and applied in living single-cell imaging in recent years.Simultaneously,chip-based living single-cell imaging is also limited by complicated trapping steps,low cell utilization,and difficult high-resolution imaging.To solve these problems,an ultra-thin temperature-controllable microwell array chip(UTCMA chip)was designed to develop a living single-cell workstation in this study for continuous on-chip culture and real-time high-resolution imaging of living single cells.The chip-based on ultra-thin ITO glass is highly matched with an inverted microscope(or confocal microscope)with a high magnification objective(100×oil lens),and the temperature of the chip can be controlled by combining it with a home-made temperature control device.High-throughput single-cell patterning is realized in one step when the microwell array on the chip uses hydrophilic glass as the substrate and hydrophobic SU-8 photoresist as the wall.The cell utilization rate,single-cell capture rate,and microwell occupancy rate are all close to 100%in the microwell array.This method will be useful in rare single-cell research,extending its application in the biological and medical-related fields,such as early diagnosis of disease,personalized therapy,and research-based on single-cell analysis.
基金The authors thank D.Berger,D.Hofmann and C.Kupka in IFW Dresden for helpful technical support.H.R.acknowledges funding from the DFG(Deutsche Forschungsgemeinschaft)within grant number RE3973/1-1.Q.J.,H.R.and K.N.conceived the work.With the support from N.Y.and X.J.,Q.J.and T.G.fabricated the thermoelectric films and conducted the structural and compositional characterizations.Q.J.prepared microchips and fabricated the on-chip micro temperature controllers.Q.J.and N.P.carried out the temperature-dependent material and device performance measurements.Q.J.and H.R.performed the simulation and analytical calculations.Q.J.,H.R.and K.N.wrote the manuscript with input from the other coauthors.All the authors discussed the results and commented on the manuscript.
文摘Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.
文摘As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.
基金Supported by Science and Technology Innovative Leading Fund of Ningxia Academy of Agriculture and Forestry Sciences(NKYZ-16-1101)~~
文摘Temperature, as an important feature of hydroponic nutrient solution, is closely related to dissolved oxygen content of nutrient solution and growth status of plant roots. How to precisely adjust the temperature of nutrient solution is the key to obtain high quality and high yield of hydroponic vegetables over summer. With Lactuca sativa vat. crispa 'Luosheng No.3' as the test material, the effect of chiller cooling technology on the temperature of nutrient solution, as well as on the yield and quality of Luosheng No.3, in over-summer hydroponic cultivation was studied. The results showed that the chiller cooling technology controlled the nutrient solution temperature in a reasonable range ((20 ± 1)℃) and promoted the growth and dry matter accumulation of Luosheng No.3, instead of affecting the quality. In short, the chiller cooling technology is applicable to the temperature regulation of nutrient solu- tion in hydroponics over summer.
基金Supported by the Agricultural Science and Technology Innovation Funds of Jiangsu(cx(12)1001-04)~~
文摘Deep-Litter System is a high yield approach to raise swine with pollution free in a lower cost. In the research, based on the heat stress in summer caused by fermentation, three temperature-control systems were designed, including natural ventilation through transoms, forced ventilation via fans, and cooling by hyperbaric spray system. Specifically, the latter intermittent auto-pressurized spray system developed in our lab, which could spray successively via pressure from storage tubes without wetting the fermentation bed, is suitable for the promotion with the deep-litter technology in rural regions , since the power consumption is only 1 kwh per day.
基金The National Natural Science Foundation of China(No.51306082,51476027)
文摘In order to incorporate the decision maker's preference into multiobjective optimization a preference-based multiobjective artificial bee colony algorithm PMABCA is proposed.In the proposed algorithm a novel reference point based preference expression method is addressed.The fitness assignment function is defined based on the nondominated rank and the newly defined preference distance.An archive set is introduced for saving the nondominated solutions and an improved crowding-distance operator is addressed to remove the extra solutions in the archive.The experimental results of two benchmark test functions show that a preferred set of solutions and some other non-preference solutions are achieved simultaneously.The simulation results of the proportional-integral-derivative PID parameter optimization for superheated steam temperature verify that the PMABCA is efficient in aiding to making a reasonable decision.
基金Supported by the National'Naturai Science Foundation of China (30970638, 21176220 and 31240054), Zhejiang Provincial Natural Science Foundation (Z13B06008) and the National Basic Research Program of China (2007CB714305).
文摘Methods to optimize the production of gamma-aminobutyric acid (GABA) by Lactobacillus brevis CGMCC 1306 were investigated. Results indicated that cell growth was maximal at pH 5.0, while pH 4.5 was pref-erable to GABA formation. The optimal temperature for cell growth (35 °C) was lower than that for GABA forma-tion (40 °C). In a two-stage pH and temperature control fermentation, cultures were maintained at pH 5.0 and 35 °C for 32 h, then adjusted to pH 4.5 and 40 °C, GABA production increased remarkably and reached 474.79 mmol·L-1 at 72 h, while it was 398.63 mmol·L-1 with one stage pH and temperature control process, in which cultivation con-ditions were constantly controlled at pH 5.0 and 35 °C. In order to avoid the inhibition of cell growth at higher L-monosodium glutamate (L-MSG) concentrations, the two-stage control fermentation with substrate feeding strat-egy was applied to GABA production, with 106.87 mmol (20 g) L-MSG supplemented into the shaking-flask at 32 h and 56 h post-inoculation separately. The GABA concentration reached 526.33 mmol·L-1 at 72 h with the fer-mentation volume increased by 38%. These results will provide primary data to realize large-scale production of GABA by L. brevis CGMCC 1306.
文摘A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.
基金Supported by the National Natural Science Foundation of China(No.50909078)the National Basic Research Program of China("973"Program,No.2013CB035900)
文摘It is important and difficult to control the temperature of mass concrete structure during high arch dam construction.A new method with decision support system is presented for temperature control and crack prevention.It is a database system with functions of data storage,information inquiry,data analysis,early warning and resource sharing.Monitoring information during construction can be digitized via this system,and the intelligent analysis and dynamic control of concrete temperature can be conducted.This method has been applied in the construction of the Dagangshan Arch Dam in China and has proven to be very convenient.Based on the decision support of this system and the dynamic adjustment of construction measures,the concrete temperature of this project is well-controlled.
基金supported by the National Natural Science Foundation of China (Grant No. 50779010)
文摘A three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system is introduced in this paper. The program was applied to simulation of the temperature and stress field of the Cao'e Sluice during the construction period. From the calculated results, we can find that the temperaiure and stress of concrete cooled with plastic pipes are much lower than those of concrete without pipes. Moreover, plastic pipes could not be corroded by seawater. That is to say, a good effect of temperature control and cracking prevention can be achieved, which provides a useful reference for other similar nearshore concrete projects.
基金supported by the National Natural Science Foundation of China(Grant Nos.41473090,41430644,11675098,41373098,41430644,and 21490585)
文摘The sheet size of a graphene oxide (GO) can greatly influence its electrical, optical, mechanical, electrochemical and catalytic property. It is a key challenge to how to control the sheet size during its preparation in different application fields. According to our previous theoretical calculations of the effect of temperature on the oxidation process of graphene, we use Hummers method to prepare GOs with different sheet sizes by simply controlling the temperature condition in the process of the oxidation reaction of potassium permanganate (KMnO4) with graphene and the dilution process with deionized water. The results detected by transmission electron microscopy (TEM) and atomic force microscopy (AFM) show that the average sizes of GO sheets prepared at different temperatures are about 1 μm and 7 μm respectively. The ultraviolet-visible spectroscopy (UV-vis) shows that lower temperature can lead to smaller oxidation degrees of GO and less oxygen functional groups on the surface. In addition, we prepare GO membranes to test their mechanical strengths by ultrasonic waves, and we find that the strengths of the GO membranes prepared under low temperatures are considerably higher than those prepared under high temperatures, showing the high mechanical strengths of larger GO sheets. Our experimental results testify our previous theoretical calculations. Compared with the traditional centrifugal separation and chemical cutting method, the preparation process of GO by temperature control is simple and low-cost and also enables large-size synthesis. These findings develop a new method to control GO sheet sizes for large-scale potential applications.
基金supported by the National Natural Science Foundation of China (Grant No. 30872000 and 41071203)partially supported by the Project of Knowledge Innovation, Chinese Academy of Sciences (No. KZXZ-YW-33)Sichuan Foundation of Excellent Young Scientists (No. 2010JQ0026)
文摘A soil temperature control system was designed for sapling study in alpine region and tested in summer, 2009. The system consisted of a power switch, voltage regulator, microcomputer timer, safety relays, temperature control device, temperature sensors, heating cables, fireproofing plastic pipes (PVC), 108 heavy-duty plastic containers and seedlings. The heating cables were held in six 2-layer PVC frames with 25 cm wide, 320 cm long and 25 cm high and three 1-layer frames with 25 cm wide and 320 cm long for 15°C soil temperature treatment, half of the 2-layer frames were used for 20°C and 25°C soil temperature treatments, respectively. Each of the frames was installed at each of ditches with 30 cm wide, 330 cm long and 30 cm deep in size. 12 seedling containers with 20 cm top diameter, 18cm bottom diameter and 25 cm high were homogenously placed at each of the ditches, and spaces between the containers were filled with natural soil. The system was economic, and could increase soil temperatures obviously and uniformly, the maximal and minimal standard errors of soil temperatures were ±0.28 and ±0.05°C at 10cm depth in the containers within each of all the ditches. In the system, aboveground environment was natural, diurnal and monthly soil temperatures varied with changing air temperature, the research results may be better to know the eco-physiological and growth responses of alpine saplings/seedlings to soil warming than that in greenhouse, laboratory, infrared heat lamp and open top chamber.
基金Supported by the National Natural Science Foundation of China(21676299,21476261and 21606255)
文摘The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has acquired extensive applications in various industries. In this study, MPC is applied to the process for separating ethanol, n-propanol, and n-butanol ternary mixture in a fully thermally coupled DWC. Both composition control and tem- perature inferent/al control are considered. The multiobjective genetic algor/thm function "gamult/obj" in Matlab is used for the weight tuning of MPC. Comparisons are made between the control performances of MPC and PI strategies. Simulation results show that although both MPC and PI schemes can stabilize the DWC in case of feed disturbances, MPC generally behaves better than the PI strategy for both composition control and tempera- ture inferential control, resulting in a more stable and superior performance with lower values of integral of squared error (ISE).
文摘In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of the waste.In this paper,some experimental researches on the thermo-mechanical characteristics of soft sedimentary rock have been presented.For this reason,a new temperature-controlled triaxial compression and creep test device,operated automatically by a computer-controlled system,whose control software has been developed by the authors,was developed to conduct the thermo-mechanical tests in different thermal loading paths,including an isothermal path.The new device is proved to be able to conduct typical thermo-mechanical element tests for soft rock.The test device and the related testing method were introduced in detail.Finally,some test results have been simulated with a thermo-elasto-viscoplastic model that was also developed by the authors.
文摘The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.
基金the National Natural Science Foundation of China(Grant Nos.11427803,11427901 and 11773040)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(CAS)(XDA04061002 and XDA15010800)the Public Technology Service Center,National Astronomical Observatories of CAS(829011V01)。
文摘The magnetic field is one of the most important parameters in solar physics,and a polarimeter is the key device to measure the solar magnetic field.Liquid crystals based Stokes polarimeter is a novel technology,and will be applied for magnetic field measurement in the first space-based solar observatory satellite developed by China,Advanced Space-based Solar Observatory.However,the liquid crystals based Stokes polarimeter in space is not a mature technology.Therefore,it is of great scientific significance to study the control method and characteristics of the device.The retardation produced by a liquid crystal variable retarder is sensitive to the temperature,and the retardation changes 0.09°per 0.10℃.The error in polarization measurement caused by this change is 0.016,which affects the accuracy of magnetic field measurement.In order to ensure the stability of its performance,this paper proposes a high-precision temperature control system for liquid crystals based Stokes polarimeter in space.In order to optimize the structure design and temperature control system,the temperature field of liquid crystals based Stokes polarimeter is analyzed by the finite element method,and the influence of light on the temperature field of the liquid crystal variable retarder is analyzed theoretically.By analyzing the principle of highprecision temperature measurement in space,a high-precision temperature measurement circuit based on integrated operational amplifier,programmable amplifier and 12 bit A/D is designed,and a high-precision space temperature control system is developed by applying the integral separation PI temperature control algorithm and PWM driving heating films.The experimental results show that the effect of temperature control is accurate and stable,whenever the liquid crystals based Stokes polarimeter is either in the air or vacuum.The temperature stability is within±0.0150℃,which demonstrates greatly improved stability for the liquid crystals based Stokes polarimeter.
基金China Postdoctoral Science Foundation(No.2019M650453)Fundamental Research Funds for the Central Universities(ZY1930)+1 种基金National Natural Science Foundation of China(21808007,21878011,21676011,and 21576014)Open Foundation of State Key Laboratory of Chemical Engineering(No.SKL-ChE-18B01)。
文摘Temperature difference control(TDC)schemes can clearly suppress the adverse influence of pressure variations on product quality control of various distillation columns(DCs)by employing temperature differences(TDs)between the sensitive stage temperature(T_(S))and reference stage temperature(T_(R)),i.e.,T_(S)-T_(R),to infer the controlled product qualities.However,because the TDC scheme has failed to specially take the corresponding relationship between the TD employed in each control loop and the controlled product quality into account,it may suffer from relatively large steady-state errors in the controlled product qualities.To address this problem,an enhanced TDC(ETDC)scheme is proposed in the current article,in which an enhanced TD(ETD),i.e.,T_(S)-α×T_(R),is employed to replace the conventional TD for each control loop.While the locations of the sensitive and reference stages of the ETD are respectively determined according to sensitivity analysis and SVD analysis,the adjusted coefficientαis set to be the ratio between the averaged absolute variation magnitudes(AAVMs)of the T_(S)and T_(R)so that the relationship between the T_(S)and T_(R)can be appropriately coordinated.With reference to the operations of three different distillation systems,i.e.,one conventional DC distilling an ethanol(E)/butanol(B)binary mixture,one conventional DC distilling an E/propanol(P)/B ternary mixture,and one dividing-wall distillation column distilling an E/P/B ternary mixture,the performance of the ETDC scheme is assessed by compared with the conventional TDC scheme and the double TD control(DTDC)scheme.The dynamic simulation results show that the ETDC scheme is better than the conventional TDC scheme with reduced steady-state errors in the controlled product qualities and improved dynamic responses,and is comparable with the DTDC scheme despite the less temperature measurements are employed.
文摘A new intelligent control scheme for hot strip coiling temperature is presented. In this scheme, the prediction mode1 of finishing temperature and the presetting model of main cooling zone are establish based on BP neural network, the feed-forward open-loop control model of main cooling zone is constructed based on T-S fuzzy neural network, a new improved structure of T-S fuzzy neural network is developed, and the feedback close-loop control model of precision cooling zone is obtained based on fuzzy control. The effectiveness of the proposed scheme has been demonstrated by computer simulation with a satisfactory result.
基金Supported by the National Natural Science Foundation of China(No.51175448,51405424)
文摘Different from the traditional hydraulic oil cooling method,a new type of constant temperature oil tank cooling system based on semiconductor refrigeration technology is designed. This paper studies the principle of semiconductor refrigeration and establishes a heat transfer model. Semiconductor cooler on piping refrigeration is simulated,and influence of the parameters on the outlet temperature,such as pipe pressure difference of inlet and outlet,pipe length,pipe radius,are gotten,and then hydraulic tank semiconductor refrigeration system is proposed. The semiconductor refrigeration system can control temperature at 37 ± 1°C.
文摘Background: MenAfriVac<sup>TM</sup> is the first of the World Health Organization (WHO)’s pre-qualified vaccines to be allowed to mass vaccination campaign at a temperature below or equal to 40°C during 4 days. This new vaccination practice has already been used in some African countries. This article described the opinion and use of this new technique by actors on the field, during a mass vaccination campaign in Côte d’Ivoire, in December 2014. Methods: We conducted a crosssectional study on the practice of CTC by actors on the field and their perception on the new practice, during a mass vaccination campaign in 2 of 25 health districts in Côte d’Ivoire, in December 2014. Findings: As results, in Séguéla 98.25% of respondents expressed a favourable opinion of CTC, citing advantages such as vaccine carriers requiring no ice packs (29.2%), financial benefit (12.28%) and lighter vaccine carriers (5.26%). In Bouna, respondents gave the same advantages in, respectively, 34%, 2% and 8% of cases. The peak of the total of vials used for immunization sessions reached 376 vials at day one, then dropped to 235 vials at day three and 220 vials at day six. Discussion: Vaccinators found some benefits related to CTC practice, but on the field, they were cautious in using CTC technique.